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1. INTRODUCTION

The detection of contrast and spatial frequency are fun-
damental aspects of vision. These features are important 
for object recognition and essential in everyday life. 
Where contrast is important in distinguishing an object 
from its background, spatial frequency reflects object 
size ( Chung  &  Legge,  2016). The ability to detect a certain 
contrast is given by contrast sensitivity (100/contrast 

threshold) and depends on spatial frequency ( Campbell  & 

 Robson,  1968;  Lesmes  et al.,  2010;  Sowden  et al.,  2002). 

The relation between contrast sensitivity and spatial fre-

quency is described by the contrast sensitivity function 

(CSF). Behaviorally, the CSF defines the lowest contrast 

one can perceive as a function of spatial frequency 

( Campbell  &  Robson,  1968), thereby defining the thresh-

old between the visible and invisible ( Pelli  &  Bex,  2013).
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The CSF is used to assess visual function. For exam-
ple, the CSF is affected in many ophthalmological condi-
tions, including amblyopia ( Howell  et al.,  1983;  Koskela 
 &  Hyvarinen,  1986;  Sjöstrand,  1981;  Wang  et al.,  2017), 
macular degeneration ( Kleiner  et al.,  1988), optic neuritis 
( Zimmern  et  al.,  1979), glaucoma ( Ichhpujani  et  al., 
 2020), retinitis pigmentosa ( Hyvärinen,  1983), cataract 
( Vasavada  et  al.,  2014), and corneal edema ( Hess  & 
 Garner,  1977). Additionally, the CSF can be altered in 
neurological conditions such as multiple sclerosis ( Regan 
 et al.,  1981), cerebral lesions ( Milling  et al.,  2014), Parkin-
son’s disease ( Ridder  et  al.,  2017), and schizophrenia 
( Cimmer  et al.,  2006).

In general, the CSF correlates with visual acuity ( Hou 
 et  al.,  2010;  Stalin  &  Dalton,  2020). However, the CSF 
measures the detection of a stimulus using a wide range 
of contrasts and spatial frequencies, and has therefore 
been proposed as a more suitable tool to assess visual 
performance compared to standard visual acuity tests 
( Huang  et  al.,  2007). For example, the CSF measures 
visual deficits missed by standard visual acuity tests. 
Thus, the CSF provides deeper insights regarding func-
tional vision and improves detection of visual pathology 
( Huang  et al.,  2007;  Lesmes  et al.,  2010).

The CSF characterizes visual perception and is 
altered by changes in the eye as well as changes in neu-
ral processing. In healthy participants, the CSF can be 
altered by cognitive manipulations such as attention, for 
example, contrast sensitivity is increased for attended 
stimuli and decreased for unattended stimuli ( Pestilli 
 et  al.,  2007). Furthermore, the CSF changes across 
development, during infancy as well as late childhood 
( Dekker  et  al.,  2020). In addition, several visual disor-
ders are at least, in part, caused by neural deficits, for 
example amblyopia ( Barrett  et al.,  2004) and glaucoma 
( Murphy  et  al.,  2016). This highlights the relevance of 
studying neural processes underlying the CSF, in addi-
tion to the ocular components. Thus, a neural measure 
of the CSF would expand our understanding of how cor-
tical processing is altered with cognition and different 
visual disorders.

Here, we translate the CSF from psychophysics, by 
introducing a new method that estimates the neural CSF 
(nCSF) in the human visual cortex using fMRI. The nCSF 
concept is derived from ophthalmology where it refers to 
the ability of the retina together with the brain to resolve 
an image, that is, not affected by eye- optics ( Campbell  & 
 Gubisch,  1966;  Le  Grand,  1935;  Michael  et al.,  2011). The 
nCSF approach builds on previous studies showing that 
individual neurons in the visual cortex are sensitive to 
contrast and spatial frequency ( Albrecht  &  Hamilton, 
 1982;  Levitt  et al.,  1994;  Sclar  et al.,  1990). This sensitiv-
ity is also present at the neural population level with fMRI 

studies showing systematic changes in contrast ( Boynton 
 et  al.,  1999;  Marquardt  et  al.,  2018), spatial frequency 
( Aghajari  et al.,  2020;  Broderick  et al.,  2022;  Henriksson 
 et al.,  2008;  Singh  et al.,  2000;  Sirovich  &  Uglesich,  2004), 
and their combination ( Goulet  &  Farivar,  2024). Here, we 
combine population measures of the CSF (akin to the 
population receptive field (pRF) method;  Dumoulin  & 
 Wandell,  2008) and we model the transition from no 
response to full response, by varying the slope of the 
contrast response function (CRF,  Boynton  et al.,  1999).

We show that our nCSF model effectively captures the 
variance in the fMRI time series. Moreover, the properties 
of the nCSF vary systematically with eccentricity, polar 
angle and across the visual hierarchy. Overall, we 
describe a quantitative validated framework to model 
nCSF properties.

2. METHODS

2.1. Participants

We present data from five participants (two males, age 
range 26- 45  years). All participants had normal or 
corrected- to- normal visual acuity, as confirmed by test-
ing visual acuity using a tumbling E eye chart. The par-
ticipants gave written informed consent prior to the start 
of the experiment. The study was approved by the Ethi-
cal Committee of Vrije Universiteit Amsterdam in accor-
dance with the World Medical Association’s Declaration 
of Helsinki.

2.2. Stimulus presentation

The stimuli were generated using PsychToolbox ( Brainard, 
 1997;  Pelli,  1997) in MATLAB (version R2018b, Math-
works). Participants viewed the stimuli on a gamma cor-
rected 32- inch BOLD screen display (Cambridge 
Research, 1920 x 1080 pixels), through an angled mirror 
attached to the head coil (distance 220 cm). 10- bit mode 
was enabled on the BOLD screen display to facilitate pre-
sentation of stimuli with contrasts below 0.78% Michel-
son contrast. Participants were instructed to fixate on a 
dot in the center of the screen, and to press a button 
when the dot changed color.

The nCSF stimulus consisted of different static sine-
wave gratings with a circular aperture of 10.2 degree 
diameter of visual angle and raised cosine edge, pre-
sented on a mean luminance background. The gratings 
varied systematically in contrast and spatial frequency; 
see Figure 1. Each stimulus block lasted 18 s and con-
sisted of gratings with the same spatial frequency but 
systematically changing (either decreasing or increasing) 
in contrast (Fig. 1A). Three different gratings were shown 
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every 1.5 s with the same contrast but a different orienta-
tion and phase (Fig. 1B), to ensure that the stimulus was 
refreshed on the retina. Twelve different contrasts were 
used in each stimulus block, ranging from 0.25– 80% 
Michelson contrast. An increasing and decreasing con-
trast block was included for each spatial frequency (0.5, 
1, 3, 6, 12, 18 c/deg), and the order in which these blocks 
were presented was fixed; see Figure  1A. We included 
stimulus blocks with both increasing and decreasing lev-
els of contrast to avoid directional effects introduced by 
the HRF (similar as in pRF designs), and to avoid the 
threshold being dependent on whether the contrast 
change is increasing or decreasing.

Before every two stimulus blocks there was a mean 
luminance block lasting for 15 s, and there was an extra 
15 s mean luminance block in the end. The orientation of 
the gratings was randomized, and two subsequent grat-
ings had at least a 45- degree difference in orientation. 
Each grating presentation lasted for 300 ms and was fol-
lowed by a 200 ms presentation of mean luminance (see 
Fig. 1B). The total stimulus protocol lasted 321 s per run. 
The contrast range presented was dependent on the 
spatial frequency shown in the stimulus block, ensuring 
an optimal sampling of the CSF (see Fig.  1C, and 
Table S1).

Retinotopic (pRF) data were collected as part of pre-
vious experiments; the stimuli consisted of a drifting bar, 
moving in eight directions. For four of the participants, 
the texture inside the bar comprised natural images. For 
the fifth participant, the bar contained flashing checker-
boards. Stimuli were presented using the same screen 

(without the 10- bit mode) and software as in the nCSF 
experiment.

2.3. Data acquisition

Anatomical and functional magnetic resonance imaging 
(fMRI) data were acquired on a 7 Tesla Philips Achieva 
scanner (Philips, Best, Netherlands) with an 8- channel 
MultiX head coil. Anatomical images were collected using 
a 3D MP2RAGE sequence (TR = 6.2 ms, TE = 3.0 ms, flip 
angle = 5.0 degrees, FOV = 220 x 220 x 164 mm, voxel 
size = 0.7 mm isotropic) ( Marques  et al.,  2010).

fMRI data were acquired using a T2*- weighted 2D 
echo- planar imaging (EPI) sequence (TR  =  1.5  s, TE  = 
22.5 ms, flip angle = 65 degrees, FOV = 216 x 216 x 97 mm, 
57 slices, voxel size = 1.7 mm isotropic) oriented across 
the visual cortex. For each participant, 10– 12 functional 
scans were acquired, with an approximate duration of 
5 min per functional run. Each functional run was followed 
by a TOPUP scan in order to correct for local image distor-
tions. Additionally, pRF data were collected for one partic-
ipant (8 functional runs) with the same sequence for visual 
field mapping (see Section 2.6). For the remaining four par-
ticipants, pRF mapping data were already available.

2.4. Data pre- processing

For the anatomical data, the MP2RAGE sequence was 
used to obtain a T1- weighted anatomical image, result-
ing in a set of different gradient echo images, that is, 
the first inversion (T1- weighted image) and a second 

Fig. 1. Schematic representation of the stimulus design. (A) We presented full- field static sinewave gratings with six 
different spatial frequencies (0.5, 1, 3, 6, 12, 18 c/deg). Gratings with the same spatial frequency are presented in both 
descending contrasts and ascending contrasts in a fixed semi- random order. (B) During every MRI volume acquisition 
(1.5 s), three gratings with the same contrast but a different orientation were shown. Each grating presentation lasted for 
300 ms followed by mean luminance lasting 200 ms. The participants fixated the red dot. (C) A typical CSF curve with dots 
showing the stimulus sampling grid across spatial frequency and contrast sensitivity (100/contrast).
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inversion (proton density scan). The first and second 
inversion were combined to generate a single anatomi-
cal image, corrected for proton density. The anatomical 
image was skull- stripped using the 3dSkullstrip func-
tion in AFNI ( Cox,  1996). Segmentation of gray and 
white matter was performed using CBS Tools in MIPAV 
( Bazin  et al.,  2007). The cortical surfaces for each par-
ticipant were reconstructed using the FreeSurfer 7.2 
recon- all function ( Dale,  1999). To improve the Free-
Surfer reconstructions particularly around the sinus, 
segmentations from CBS Tools were added to Freesurf-
er’s “brainmask.mgz” file, and recon- all was run again.

For the functional data, all functional images were 
pre- processed using AFNI. The warp field of all func-
tional images was estimated based on the EPI and 
TOPUP of each run to correct for susceptibility distor-
tions. The motion parameters were calculated to apply 
motion correction to all functional images. Then, all 
warped and motion corrected volumes were combined 
to generate an average EPI image. This EPI image was 
registered to the anatomical image. The volume of the 
mean EPI image was masked using the AFNI function 
3dAutomask to reduce volume size, and was zero- 
padded using 3dZeroPad. The center of mass of the 
anatomical volume was aligned to the mean EPI image 
using @Align_centers to improve co- registration. Then, 
the mean EPI image was manually shifted and rotated 
using the Nudge dataset AFNI plugin, after which the 
automated registration function 3drotate optimized the 
co- registration using affine transformation. The co- 
registration was then applied to all EPI images of all indi-
vidual functional runs using the function 3dNwarpApply 
with nearest- neighbor interpolation. The co- registered 
functional volumes were then projected to the partici-
pant’s cortical surface using the mri_vol2surf function in 
FreeSurfer ( Dale,  1999). Veins were identified by display-
ing the mean EPI signal on the cortical surface, and 
masking those vertices with relatively low signal inten-
sity. The BOLD time series were then detrended by 
demeaning, applying the discrete cosine transform 
(DCT), and removing the first three DCT coefficients to 
eliminate low- frequency trends. The detrended data 
were further processed by averaging over functional 
runs and converting to BOLD percent signal change.

2.5. Model- based analysis

The nCSF model combines the contrast sensitivity func-
tion (CSF) with the contrast response function (CRF) and 
aims to fit the CSF in each cortical location (voxel), thereby 
obtaining the nCSF (Fig.  2). The CSF is described by 
 Chung  and  Legge  (2016) and is characterized as an asym-
metric parabolic function with the following equation:

 

f SF( ) = 
 CSp − SF − SFp( )2  × widthL( )2   if  SF < SFp,

CSp − SF − SFp( )2  × widthR( )2   if  SF ≥ SFp

⎧

⎨
⎪⎪

⎩
⎪
⎪  

(Equation 1)

where f(SF) is the contrast sensitivity at spatial frequency 
(SF), CSp is the peak contrast sensitivity, SFp is the spatial 
frequency at which CSp occurs (peak spatial frequency), 
and widthL and widthR are the curvatures of the left and 
right branches of the asymmetric parabolic function, 
respectively ( Chung  &  Legge,  2016). Note, following the 
notation in  Chung  and  Legge  (2016), “width” parameters 
refer to the “fall off rate”, hence a CSF with a high widthr 
actually has a narrower shape (there is a faster drop in 

Fig. 2. Schematic overview of the nCSF model- based 
analysis. The nCSF model combines the CSF ( Chung 
 &  Legge,  2016) with the CRF ( Boynton  et al.,  1999). We 
predict the fMRI response by a multiplication of the nCSF 
model with the stimulus sequence, and convolve this 
model time course with the HRF. We vary the slope of the 
CRF (slopeCRF) and the CSF parameters (CSp, SFp, and 
widthR). The optimal model parameters are estimated 
by maximizing the variance explained (r2) between the 
predicted and measured fMRI time series, similar to the 
pRF method ( Dumoulin  &  Wandell,  2008).
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sensitivity to higher spatial frequencies). The widthL is set 
at 0.68 ( Chung  &  Legge,  2016), and widthR is varied as a 
model parameter, since we expect the most variance on 
the right branch at higher spatial frequencies (SF > SFp). 
We report the normalized area under the log contrast 
sensitivity function (AUC, %) as a summary metric of the 
full CSF for spatial frequencies between 0.5– 18 c/deg 
(stimulus space). AUC is calculated by approximating the 
integral of the logarithmic CSF, and normalizing it with 
reference to the area under a “standard” logarithmic CSF 
calculated from healthy controls (from Chung & Legge, 
2016: CSp = 166, SFp = 2.5 (c/deg), widthL = 0.68, wid-
thR = 1.28, shown in Fig. 1C).

The parameters SFp and CSp are transformed to log10 
space before fitting the CSF (Equation 1,  Chung  &  Legge, 
 2016). Here, we used an adapted version of Equation 1 
where all parameters are defined in linear space before 
fitting the CSF:

 
f SF( ) = 

10
log10 CSp( ) −  ( log10 SF( ) −   log10 SFp( )( ) ×   widthL( )2

 if  SF < SFp,

10
log10 CSp( ) −  ( log10 SF( ) −   log10 SFp( )( ) ×   widthR( )2

 if  SF ≥ SFp

⎧

⎨
⎪⎪

⎩
⎪
⎪  

(Equation 2)

For transforming the binary response of the CSF to a 
gradual response, we added the CRF to the nCSF model 
(Fig.  2). We fitted CRFs using the following equation 
(modified from  Boynton  et al.  (1999)):

 
R C( ) = a Cq

Cq +Qq  
(Equation 3)

where R is the fMRI response and C is the amount of 
RMS- contrast. The variables for Q and q define the shape 
of the CRF. Q represents the contrast where the fMRI 
response is at 50%, and was depended on the CSF. We 
fitted the variable q or slopeCRF.

The nCSF parameters were estimated from the fMRI 
data using a model- based fitting approach (Fig. 2), simi-
lar to the population receptive field (pRF) method 
( Dumoulin  &  Wandell,  2008). First, the fMRI blood oxygen 
level dependent (BOLD) response is predicted through 
multiplying the nCSF model with the stimulus sequence 
and convolving the time course with the hemodynamic 
response function (HRF). Here, the HRF was modeled 
using the two gamma basis functions ( Glover,  1999). The 
coefficients corresponding to the canonical HRF, its 
derivative, and dispersion were fixed at values of 1, 1, 
and 0, respectively ( Pedregosa  et  al.,  2015). The same 
HRF was used in fitting both the nCSF and pRF model. 
We varied the model parameters (CSp, SFp, widthR and 

slopeCRF) in a coarse- to- fine manner. All model parame-
ters were varied until the residual sum- of- squares (RSS) 
is minimized between the predicted and measured fMRI 
data, thereby maximizing the variance explained (r2) of 
the model. The nCSF model was fitted to all cortical loca-
tions (voxels) independently. We selected cortical loca-
tions with r2 > 30% in both pRF and nCSF model fits for 
further analyses.

2.6. Region of interest definition

For the region of interest (ROI) definition, pRF mapping 
was used ( Dumoulin  &  Wandell,  2008). These data were 
already available for four participants, and we collected 
pRF data for one participant (see Section  2.3). We 
included visual field maps V1, V2, V3, hV4 and visual field 
map clusters TO, LO, and V3AB as ROIs ( Wandell  et al., 
 2007).

2.7. Model validation

We validated the method using simulations ( Dumoulin  & 
 Wandell,  2008;  Lerma- Usabiaga  et al.,  2020), where the 
ground truth is known, and estimated the accuracy 
through model parameter recovery. To validate the 
nCSF method, we simulated two nCSF models with  
different CSF parameters (in green: SFp  =  1 c/deg, 
CSp = 150, widthR = 1.3, in red: SFp = 2 c/deg, CSp = 100, 
widthR = 1). For each simulated dataset, the predicted 
response was calculated using the stimulus sequence 
(as described in Section 2.2) and combination of model 
parameters, convolved with the standard HRF. We nor-
malized these synthetic voxel time series and added 
three different noise levels. Noise was generated by 
sampling from a normal distribution (M  =  0, SD  =  1) 
multiplied by a scaling factor 0.4, 0.7, or 1.1. For each 
noise level and combination of model parameters, 100 
time series were generated. Next, we fitted the nCSF 
model using the same HRF used for the main data anal-
ysis (see Section  2.5). The model parameters were 
extracted from the simulated datasets, and the vari-
ance explained for each of the three noise levels was 
computed, resulting in the low, medium, and high vari-
ance explained categories. The two different nCSF 
curves for the three variance explained categories are 
shown in Figure 3.

Additionally, we simulated the effect of the HRF on the 
model parameters (see HRF Simulation section in Sup-
plementary Materials). Furthermore, we simulated how 
slopeCRF varies with noise, and the effect of slowing speed 
at which the stimulus changes contrast (see CRF Simula-
tion section in Supplementary Materials).
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3. RESULTS

3.1. Validation of the nCSF model- based analysis

Validation is essential for method development ( Aqil 
 et al.,  2021;  Dumoulin  et al.,  2003;  Dumoulin  &  Wandell, 
 2008). Modern data- analyses techniques are complex 
and it is impossible to check the software by eye: ground- 
truth datasets are needed ( Lerma- Usabiaga  et al.,  2020). 
Here, we validated the nCSF model using simulations.

We created two “ground- truth” nCSF models, with dif-
ferent parameters (red and green in Fig. 3), added noise, 
and refitted the resulting time series to determine how 

well we can recapture the model parameters (see Sec-
tion 2). We splitted the resulting fits into three variance 
explained levels: high (r2  >  50%), medium (30%  < 
r2 < 50%), and low (10% < r2 < 30%). Across all variance 
explained levels (see Fig.  3A- C), the median estimated 
nCSF curves (dashed lines in red and green) closely 
match the true curve (solid lines in red and green). How-
ever, the spread of the estimated nCSF curves increased 
with lower levels of variance explained (compare shaded 
regions in Fig. 3A- C). The median values of the recovered 
parameters closely match the ground- truth values (com-
pare the dotted with solid horizontal lines in Fig.  3D- I). 

Fig. 3. nCSF model validation. We tested different combinations of nCSF model parameters, resulting in different nCSF 
curves (panels A- C). For each combination of parameters, the results are shown for synthetic data (100 permutations) 
and three variance explained categories (high: r2 > 50%; medium: 30% < r2 < 50%; and low: 10% < r2 < 30%, left to right, 
respectively). The solid lines represent the nCSF curves based on the chosen parameters, the dashed lines represent 
the median nCSF curves, and the shaded areas represent the 25th and 75th percentile. Panels (D- I) Show how well 
the parameters are recaptured: solid lines indicate the true nCSF model parameters, whereas the dashed lines and 
distributions represent the median values of 100 permutations. For each model parameter the effect is shown for the high, 
medium, and low variance explained category (left to right, respectively). (D) and (G) Normalized AUC (%, output variable). 
(E) and (H) SFp (c/deg). (F) and (I) CSp (a.u.). Overall, the nCSF fit recovers the parameters, but the variability increases with 
increasing noise (lower variance explained). Some parameters, in particular normalized AUC (%, output variable) and SFp 
(c/deg), are more stable than others (in particular CSp).
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Again, the spread of the recovered parameters increases 
from high to low variance explained levels (see Fig. 3D- I).

3.2. nCSF model captures cortical responses 
across the visual hierarchy

We fitted the nCSF model to the fMRI time series across 
the cortex, demonstrating its ability to capture a diverse 
range of responses. Figure 4 presents example fits from 
individual vertices in the V1 and TO regions (Fig.  4A), 
highlighting contrasting parameter values. The variance 
explained by the model for these locations was 74.72% 
for TO and 57.25% for V1, indicating that the nCSF model 
effectively captures the variance in the fMRI time series 
across both regions. Furthermore, the predicted fMRI 
time series closely align with the recorded data, as illus-
trated in Figure 4B. Notably, the nCSF curve in V1 exhib-
its a higher SFp compared to the cortical location in TO 
(Fig. 4C).

3.3. nCSF properties vary across the cortex

Here, we report the parameters SFp and normalized AUC 
as they are (1) they are the most robust to noise (see Sec-
tion 3.1), (2) can be used as serve as a useful readout of 
the whole CSF (e.g., ( Applegate  et al.,  1997)), and (3) can 
be consistently derived across a range of CSF parame-
terizations ( Jigo  et al.,  2023).

The visual areas and eccentricity maps derived from 
pRF mapping for one participant are shown on the 

inflated cortical surface in the region near the occipital 
pole (Fig. 5, see Fig. S8 for the other participants). The 
eccentricity maps range from 0– 5 degrees of visual angle, 
indicating the visual field representation. nCSF parameter 
and outcome estimates are projected on the inflated cor-
tical surface; see Figure 5C- E.

The variance explained of the nCSF model is high 
across eccentricities and visual areas; see Figure 5C. The 
normalized AUC is high around the foveal region and gen-
erally decreases with eccentricity (Fig.  5D). SFp is also 
higher near the foveal region compared to the parafoveal 
region and decreases as a function of eccentricity (see 
Figs. 5E and 6B), consistent with previous studies ( Aghajari 
 et al.,  2020;  Broderick  et al.,  2022;  Henriksson  et al.,  2008). 
We observe that these systematic changes are similar 
between visual areas and participants (see Fig. S6).

3.4. nCSF properties vary around the visual field  
in V1

To determine how nCSF parameters vary with eccentric-
ity in V1, we used a linear regression analysis to fit the 
slope of eccentricity versus nCSF parameters. This anal-
ysis was performed separately per participant, only 
including vertices where both the nCSF and pRF model 
fits had a variance explained >30%. To correct for 
volume- to- surface upsampling, we determined the 
degrees of freedom used in calculating the t- statistics by 
taking the number of cortical locations (vertices) divided 
by the upsampling factor.

Fig. 4. Example fMRI time series and nCSF model fits. (A) Inflated cortical surface (left hemisphere) showing the location 
of the example cortical locations in V1 (blue circle) and TO (red circle). (B) Predicted (solid line) and actual (dotted line) 
fMRI time series of a vertex in V1 (top row) and TO (bottom row). (C) nCSF curves for example cortical locations in V1 
(blue) and TO (red). Each dot represents one of the spatial frequencies used in the stimulus sequence.
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Overall, a decrease in SFp and normalized AUC can be 
observed in the nCSF curves for different eccentricity 
bands (Fig. 6A for an example participant; Fig. S6 for all 
participants), displaying a shift leftward (toward lower 
spatial frequencies) as well as a general decrease in the 
area under the curve. SFp decreases as a function of 
eccentricity in V1 for all participants, p  <  0.001 (see 

Fig. 6B and Table S2). The normalized AUC also decreases 
with eccentricity in V1 for all participants, p < 0.001 (see 
Fig. 6C and Table S2).

We also compared how SFP and normalized AUC dif-
fer from the horizontal and vertical meridian by perform-
ing an independent- sample t- test, separately per 
participant (again only including vertices where both the 

Fig. 5. nCSF model parameters displayed on the cortical surface. Parameters are shown for participant 3 (see Fig. S8 
showing all participants’ surfaces). We included cortical locations with variance explained >10% for visualization.  
(A) Inflated cortical surface (left hemisphere) with the lateral (top row) and medial (bottom row) views. Black boxes indicate 
the zoomed views for panels (B- E). (B) Eccentricity (deg, from pRF mapping data) for comparison with nCSF parameters. 
Borders of visual areas (white lines) are displayed (V1, V2, V3, V3ab, hV4, LO, TO). (C) Variance explained (r2 %) of nCSF 
fits is high across visual areas and eccentricities. (D) Normalized AUC nCSF model (%, output variable). (E) nCSF model 
parameter: SFp (c/deg).

Fig. 6. Variation in nCSF properties across eccentricity and polar angle within V1. (A) nCSF curves in V1 for one participant, 
split by eccentricity bands (from pRF mapping: 0– 1 degrees, 2– 3 degrees, 4– 5 degrees eccentricity; represented by purple, 
blue and green lines, respectively). Solid lines represent the median nCSF for all cortical locations within V1 and eccentricity 
band (where r2 > 30% in both pRF and nCSF model fits). Shaded regions represent the 25th and 75th percentile of the nCSF 
curves. We extrapolated the nCSF beyond the range of spatial frequencies present in the stimuli (>18 c/deg); where this has 
been done, the lines become dotted and the shading becomes lighter. (B) and (C) SFp and normalized AUC decrease with 
eccentricity respectively across all participants in V1 (mean = thick black line, individuals = dotted gray lines); lines are the 
mean value binned by eccentricity (bin width = 0.5 deg). (D) nCSF curves for the horizontal and the vertical meridian. Solid 
lines represent the median nCSF for all cortical locations within the horizontal or vertical meridian; shaded regions represent 
the 25th and 75th percentile of the nCSF curves. We extrapolated the nCSF beyond the range of spatial frequencies present 
in the stimuli (>18 c/deg); where this has been done, the lines become dotted and the shading becomes lighter. (E) and (F) 
SFp and normalized AUC for the horizontal and the vertical meridian. The solid lines indicate a significant difference within 
a participant between the horizontal and vertical meridian. The dotted lines indicate that there is no significant difference 
between the horizontal and vertical meridian within a participant.
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nCSF and pRF model fits had a variance explained >30% 
and correcting for volume- to- surface upsampling). Verti-
ces were assigned to the horizontal or vertical meridian if 
they were within 15 (radial) degrees of the meridian, and 
had eccentricity values between 1 and 5 degrees (to 
avoid ambiguous polar angles around the fovea, follow-
ing  Himmelberg  et al.,  2022). Additionally, we found dif-
ferent nCSF curves for the horizontal and the vertical 
meridian (see Fig.  6D, example participant), and lower 
values for SFP and normalized AUC in the vertical merid-
ian compared to the horizontal meridian (p < 0.001 for all 
participants except P1, see Fig. 6E, F).

3.5. nCSF properties vary across the cortical 
hierarchy

First, we compared nCSF curves across the cortical hier-
archy. The nCSF curves are different across the cortical 
hierarchy, for example between V1 and TO. This is exem-
plified in Figure 7A, which shows the nCSF curves for one 
participant (for a comprehensive view of all participants 
and visual areas, see Fig. S6). Notably, the center of the 
nCSF curve for TO is further left (lower SFp) than V1. Next, 
we compared SFp and normalized AUC across eccentric-
ity and the cortical hierarchy. Extrastriate regions tend to 
show a decrease in SFp and normalized AUC with eccen-
tricity, similar to V1 (see Fig. 7B, 7C for an example par-
ticipant, and Fig. S7 for all other participants). However, 
this effect is less pronounced in extrastriate regions com-
pared to V1. Additionally, there is an overall decrease 

across participants in SFp and AUC moving up the corti-
cal hierarchy (see Fig. 7E, 7F). Lastly, we investigated the 
goodness- of- fit of the nCSF model. Across all visual 
areas and participants, the nCSF model effectively cap-
tures the variance in the fMRI data (variance 
explained > 30%); see Figure 7D.

4. DISCUSSION

We introduce the neural contrast sensitivity function 
(nCSF) which is both a concept and a method. As a con-
cept, the nCSF describes the sensitivity of neural popula-
tions as a function of spatial frequency and contrast. As 
a method, we model the nCSF in the human visual cortex 
using fMRI and using an approach similar to pRF model-
ing ( Dumoulin  &  Wandell,  2008). The nCSF parameters 
were estimated from the fMRI data using a biologically- 
inspired, model- based approach similar to the pRF 
method. We model nCSF properties using a combination 
of the CSF ( Chung  &  Legge,  2016) and CRF ( Boynton 
 et al.,  1999).

We validated the nCSF method using simulations, 
showing that the key parameters of interest— spatial fre-
quency peak and area under the curve— can be esti-
mated accurately and are robust to noise. Importantly, 
the nCSF model effectively captured the variance in the 
fMRI data across the visual cortex. Consistent with prior 
fMRI studies ( Aghajari  et al.,  2020;  Goulet  &  Farivar,  2024; 
 Henriksson  et al.,  2008), we found that the peak spatial 
frequency decreases as a function of eccentricity. In 

Fig. 7. Variation in nCSF properties across the cortical hierarchy. (A) nCSF curves in V1 (blue) and TO (red) for one 
participant. Solid lines represent the median nCSF for all cortical locations within a given visual area and eccentricity band 
(where r2 > 30% in both pRF and nCSF model fits). Shaded regions represent the 25th and 75th percentile of the nCSFs. We 
extrapolated the nCSF beyond the range of spatial frequencies present in the stimuli (>18 c/deg); where this has been done, 
the lines become dotted and the shading becomes lighter. (B) and (C) SFp and normalized AUC vary with eccentricity for 
one participant, across visual areas (line colors). (D, E, and F) mean values for variance explained, SFp and normalized AUC 
across visual areas. Gray dots and bars indicate the median and interquartile range for individual participants.
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addition, total sensitivity (i.e., area under the curve) 
decreases with eccentricity. This effect was similar across 
the visual cortex, but more pronounced in the early visual 
cortex (V1, V2, V3) versus the late visual cortex (e.g. LO 
and TO). We also find that peak spatial frequency and 
area under the curve are lower in the vertical than hori-
zontal meridian which is in line with findings in psycho-
physics (Himmelberg et al., 2020, 2022).

The nCSF concept combines notions of ophthalmol-
ogy ( Campbell  &  Gubisch,  1966;  Le  Grand,  1935;  Michael 
 et  al.,  2011), single neuron recordings ( Albrecht  & 
 Hamilton,  1982;  Levitt  et al.,  1994;  Sclar  et al.,  1990), and 
neuroimaging ( Aghajari  et al.,  2020;  Boynton  et al.,  1999; 
 Henriksson  et  al.,  2008). In ophthalmology, the nCSF 
refers to processing in the retina and visual hierarchy but 
independent of optical aberrations. Though we measure 
brain responses directly, optical aberrations may still 
contribute. However, different nCSF properties in the 
same visual field location across the different visual field 
maps cannot be attributed to optical aberrations. Simi-
larly, variations across eccentricity and polar angle are 
not likely due to optical aberrations, but due to known 
neural processing differences. Our nCSF concept also 
differs from single neuron recordings. For example, a 
population of neurons and the hemodynamic response 
properties contribute to the signal. These considerations 
are similar to the considerations underlying the concept 
of the pRF ( Dumoulin  &  Knapen,  2018;  Dumoulin  & 
 Wandell,  2008). We measure the nCSF using fMRI, but, in 
principle, the nCSF is independent of the measurement 
modality and can also be measured with other imaging 
techniques, such as invasive human electrodes ( Harvey 
 et al.,  2013;  Yoshor  et al.,  2007) or MEG ( Eickhoff  et al., 
 2024;  Kupers  et al.,  2021).

Many factors may lead to changes in nCSF properties, 
for example using different stimuli or tasks. Different 
stimuli, for example different temporal characteristics, 
may elicit responses from different neural populations 
and therefore result in different nCSF. Here, we used grat-
ings, but the same nCSF model could be fit and applied 
with any stimuli which covers the range of spatial fre-
quencies and contrasts of interest; allowing comparisons 
across a large range of potential experiments. Likewise, 
attention influences the behavioral CSF, and therefore dif-
ferent tasks may influence the nCSF ( Cameron  et  al., 
 2002;  Jigo  &  Carrasco,  2020). Thus, the stimuli and tasks 
are likely to influence the neural population driving the 
responses underlying the nCSF model.

Furthermore, the nCSF model is based on a psycho-
physical model of the CSF, which can be parameterized 
using many different functions. We selected the asym-
metric logarithmic parabolic function (aLP, Chung & 
Legge, 2016); fixing the width of the left side of the func-

tion, giving a 3 parameter model (CS
p, SFp, widthr). We 

selected this model as a balance between flexibility and 
simplicity. The advantage of the aLP over symmetrical 
models is that it can capture the slower decrease in sen-
sitivity to lower spatial frequencies compared with the 
more rapid decrease toward higher spatial frequencies, 
with the same number of parameters. Furthermore, disor-
ders affecting the CSF typically (but not always, see 
below) affect it in characteristic ways, with either (1) a 
uniform drop in contrast sensitivity (translation down the 
y axis), (2) uniform drop in spatial frequency (translation 
leftward), or (3) selective sensitivity loss at high spatial 
frequencies ( Chung  &  Legge,  2016). The aLP can appro-
priately capture all these changes, with a small number of 
parameters.

However, alternative CSF equations would likely pro-
duce similar results ( Watson  &  Ahumada,  2005).  Jigo 
 et al.  (2023) found that of the nine different functions, the 
“YQM” model (from  Yang  et al.,  1995) provided the best 
fit to the data, but the aLP and several other models per-
formed similarly. Previous fMRI studies of spatial fre-
quency sensitivity have included a log- gaussian ( Aghajari 
 et  al.,  2020) and a symmetrical log parabolic function 
( Goulet  &  Farivar,  2024). Given the similarities between 
the functions ( Watson  &  Ahumada,  2005), it is likely that 
these different models will perform similarly, especially on 
core parameters such as peak spatial frequency and total 
sensitivity (area under the curve).

It is likely the optimal form of the model will vary 
depending on use case. For some conditions, a two- 
parameter model may be appropriate ( Chung  &  Legge, 
 2016). In some specific patient groups, a more sophisti-
cated model will be necessary, for example selective loss 
of sensitivity at low spatial frequencies (cataracts) or 
selective loss at middle spatial frequencies (multiple scle-
rosis) would not be captured well by the three- parameter 
form of the aLP.

Just as there are alternative functions to describe the 
CSF component, there are alternative functions to 
describe the CRF. Here, we used a modified form of the 
Naka- Rushton function, with a single slope parameter 
allowing us to capture the nonlinear responses to 
increases in contrast. Many alternative functions have 
been used to fit the CRF, including the two- parameter 
form the Naka- Rushton function ( Boynton  et al.,  1999) as 
well as linear, logarithmic, and exponential functions 
(e.g.,  Albrecht  &  Hamilton,  1982) and a binary step func-
tion ( Goulet  &  Farivar,  2024). We selected the Naka- 
Rushton function as it is often used to model the CRF 
and is biologically plausible, approximating the gain con-
trol known to occur in cortical neurons ( Heeger,  1992). 
For fMRI data, there is evidence that sustained adapta-
tion promotes nonlinearities in the CRF, while unadapted 
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responses will be more linear ( Vinke  et al.,  2022). Hence, 
in some conditions, a linear model might be more appro-
priate, depending on the duration of the stimulus. Simi-
larly, using stimuli which move more slowly through 
contrast space will likely result in more accurate esti-
mates for the CRF (see CRF Simulation and Estimating 
the slopeCRF sections in Supplementary Materials).

In summary, our implementation of the nCSF offers a 
robust and accurate fit to the data while maintaining sim-
plicity and interpretability. However, it is not the only possi-
ble implementation. In the same way that the pRF model 
( Dumoulin  &  Wandell,  2008) has been extended, we expect 
that the nCSF model will also be adapted and refined for 
different applications. Future models could benefit from 
integrating established computational motifs such as sup-
pression ( Zuiderbaan  et al.,  2012), response compression 
( Kay  et  al.,  2013), and divisive normalization ( Aqil  et  al., 
 2021) to enhance their predictive power. In studies involv-
ing patient populations where the shape of the CSF may 
vary or be less predictable, model- free approaches could 
be especially valuable for capturing unique characteristics 
and providing a more flexible framework ( Carvalho  et al., 
 2020;  Greene  et al.,  2014;  Lee  et al.,  2013).

The psychophysical CSF is widely used to assess per-
ception in health and disease ( Chung  &  Legge,  2016;  Hou 
 et al.,  2010;  Pelli  &  Bex,  2013). However, neural CSFs can 
vary across different cortical regions and levels of the 
processing hierarchy, and these variations may not 
always align with perceptual CSFs. This discrepancy 
highlights the need to investigate both perceptual and 
neural measures, as deficits might be present in one 
domain but not the other. The nCSF model provides a 
useful starting point for future research in this area, help-
ing to better understand the diverse characteristics of 
neural computations across different contexts, popula-
tions, and conditions.

5. CONCLUSION

We introduce a novel method to measure the nCSF in the 
human visual cortex. We provide a quantitative, validated 
framework and show how nCSF properties vary across 
visual areas and with eccentricity. This method can be 
applied to both healthy and clinical conditions, and pro-
vide novel insights into the cortical organization underly-
ing perception.
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