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a b s t r a c t 

Computational models which predict the neurophysiological response from experimental stimuli have played an important role in human neuroimaging. One type of 
computational model, the population receptive field (pRF), has been used to describe cortical responses at the millimeter scale using functional magnetic resonance 
imaging (fMRI) and electrocorticography (ECoG). However, pRF models are not widely used for non-invasive electromagnetic field measurements (EEG/MEG), 
because individual sensors pool responses originating from several centimeter of cortex, containing neural populations with widely varying spatial tuning. Here, we 
introduce a forward-modeling approach in which pRFs estimated from fMRI data are used to predict MEG sensor responses. Subjects viewed contrast-reversing bar 
stimuli sweeping across the visual field in separate fMRI and MEG sessions. Individual subject’s pRFs were modeled on the cortical surface at the millimeter scale 
using the fMRI data. We then predicted cortical time series and projected these predictions to MEG sensors using a biophysical MEG forward model, accounting for 
the pooling across cortex. We compared the predicted MEG responses to observed visually evoked steady-state responses measured in the MEG session. We found 
that pRF parameters estimated by fMRI could explain a substantial fraction of the variance in steady-state MEG sensor responses (up to 60% in individual sensors). 
Control analyses in which we artificially perturbed either pRF size or pRF position reduced MEG prediction accuracy, indicating that MEG data are sensitive to pRF 
properties derived from fMRI. Our model provides a quantitative approach to link fMRI and MEG measurements, thereby enabling advances in our understanding of 
spatiotemporal dynamics in human visual field maps. 

1

 

s  

O  

p  

t  

(  

s  

H  

i  

p  

s  

fi  

H  

f  

t  

t  

h  

fl  

b  

t  

b  

i  

r
 

h
R
A
1
(

. Introduction 

A fundamental goal in human neuroscience is to understand how
ensory inputs are transformed and represented in the nervous system.
ne approach to reach this goal is to build encoding models. This ap-
roach uses a quantitative description of the operations that relate input
o output, e.g., a visual image to fMRI blood-oxygen-level-dependent
BOLD) responses, providing a test of our understanding of how vi-
ual inputs are encoded in the visual pathways ( Naselaris et al., 2011 ;
oldgraf et al., 2017 ). Encoding models have been successful in predict-

ng neural responses in human visual cortex. For example, visual field
references of neural populations were predicted from fMRI BOLD re-
ponses ( Dumoulin and Wandell, 2008 ; Kay et al., 2013 ) and intracranial
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eld potentials, or electrocorticography (ECoG) ( Yoshor et al., 2007 ;
arvey et al., 2013 ; Winawer et al., 2013 ). In addition to providing a

unctional description of neural processes, encoding models can be used
o compare data across different measurement techniques. For example,
he fMRI BOLD signal measures vascular responses on the time scale of
undreds of milliseconds to seconds, whereas MEG measures magnetic
ux at the millisecond scale; the data are not directly comparable but
y applying a common encoding model with stimulus-referred parame-
ers, such as position or size of the receptive field, the measurements can
e compared. In this way, there is greater potential to integrate record-
ngs with a high spatial resolution and recordings with a high temporal
esolution, in order to study the visual system with greater precision. 

However, encoding models from stimulus to measurement are rela-
ively uncommon for non-invasive electromagnetic field measurements,
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ike magnetoencephalography (MEG) or electroencephalography (EEG).
hile both MEG and EEG are widely used and provide excellent time-

esolved measurements of brain activity across the whole brain, the
ooling area of a single EEG or MEG sensor spans large parts of the
ortex (on the order of several centimeters). Since this pooling area is
uch coarser than the spatial scale at which stimulus-selectivity tends

o vary in visual cortex (on the order of millimeters for stimulus po-
ition, and sub-millimeter for orientation, spatial frequency, and other
roperties), building an encoding model to fit data from an MEG or EEG
ensor is not straightforward, and may not be easily interpretable. For
xample, a population receptive field (pRF) for a single MEG sensor is
ikely to reflect neural signals from many different parts of the visual
eld and from multiple visual areas. The other way around, estimating

ocal pRFs on the cortex from MEG sensor responses would require a
omputational model that transforms magnetic flux from hundreds of
ensors to thousands of cortical locations. This inverse problem is ill-
osed (under-constrained) and hence does not have a unique solution. 

Here, we propose a novel, pRF modeling approach to predict MEG
ensor responses from the stimulus. To do so, we extend the pRF
odel developed by Dumoulin and Wandell (2008) , which has been
 well-established approach to study the spatial properties of the hu-
an visual system in both healthy and diseased subjects ( Wandell and
inawer, 2015 ; Dumoulin and Knapen, 2018 ). Our modeling approach

an be divided into two steps. First, it estimates local pRFs on the cortex
sing fMRI, and predicts the neural response for a particular visual stim-
lus on the cortical surface. Second, the model projects these predicted
esponses to MEG sensors, using a biophysical model of the head. We
ompared predicted MEG sensor responses to observed MEG responses
hile subjects viewed a visual mapping stimulus. Using this modeling
pproach, we show that MEG responses to a visual stimulus can be pre-
icted using pRF models estimated from fMRI. 

. Methods 

.1. Subjects 

Ten subjects (5 female), ages 20–45 years ( M = 29.7 years, SD = 7.3
ears) with normal or correct-to-normal vision, participated in the
tudy. MRI and MEG sessions were conducted on separate days. All
canning sessions took place at New York University. Subjects provided
ritten informed consent. The experimental protocol was in compliance
ith the safety guidelines for MRI and MEG research and was approved
y the University Committee on Activities involving Human Subjects at
ew York University, USA. 

.2. Stimuli 

Stimuli were generated using MATLAB (MathWorks, MA, USA) and
sychToolbox ( Brainard, 1997 ; Pelli, 1997 ; Kleiner et al., 2007 ) on a
acintosh computer. In both MRI and MEG sessions, subjects were pre-

ented with contrast-reversing checkerboard stimuli (10 Hz), windowed
ithin a bar aperture that swept across the visual field in discrete steps.
he area outside the stimulus was set to a uniform gray, equal in lumi-
ance to the mean of the black and white checkerboards. Both MRI and
EG stimuli were confined to a circular aperture 10° in radius, contrast-

eversal rate (10 Hz), bar width (2.5°, i.e ., 1/4th of the full-field stimulus
adius, 10°), but differed in presentation length and sequence (see Ex-
erimental design). Details on the stimulus display and experimental
esign for the MRI and MEG sessions are separately described in the
ollowing paragraphs. 

.2.1. Stimulus display ‐ MRI 

All subject’s structural and functional data were acquired at the Cen-
er for Brain Imaging at New York University. We used a Siemens Alle-
ra 3T head-only scanner for subjects S1 and S2, and a Siemens Prisma
T full-body scanner for subjects S3–S10 after the NYU Center for Brain
2 
maging acquired a new scanner. Visual display setup was therefore also
ifferent for subjects S1 and S2, compared to subjects S3–S10. 

Siemens Allegra 3T: For subjects S1 and S2, stimuli were presented
ith an LCD projector (Eiki LC_XG250, CA, US) with a screen resolution
f 1024 × 768 pixels and refresh rate of 60 Hz. Stimuli were displayed
nto a translucent back-projection screen in the bore of the magnet.
ubjects viewed the screen through an angled mirror mounted onto the
oil of the scanner at a distance of ∼58 cm. The stimulus was confined
o a circular aperture with a diameter of 20°. The display was calibrated
nd gamma-corrected using a linearized lookup table. 

Siemens Prisma 3T: For subjects S3-S10, stimuli were presented with
 DPL LED PROPixx projector (VPixx, QC, Canada) with a screen res-
lution of 1920 × 1080 pixels and refresh rate of 60 Hz. Images were
isplayed on a translucent back-projection screen in the bore of the mag-
et. Subjects viewed the screen through an angled mirror mounted onto
he coil of the scanner at a distance of ∼83.5 cm. To match the stimuli
o previous subjects’ scan sessions, we again confined the stimulus to a
ircular aperture with a diameter of 20°. The display was calibrated and
amma-corrected using a linearized lookup table. 

.2.2. Stimulus display ‐ MEG 

Images were presented using an InFocus LP850 projector (Texas In-
truments, Warren, NJ) with a resolution of 1024 × 768 pixels and re-
resh rate of 60 Hz. Images were projected via a mirror onto a front-
rojection translucent screen at a distance of approximately 42 cm from
he subject’s eyes. The display was calibrated with the use of a LS-100
uminance meter (Konica Minolta, Singapore) and gamma-corrected us-
ng a linearized lookup table. The stimuli were confined to a circular
perture with a diameter of 20°. 

.3. Experimental design 

.3.1. Experimental design ‐ fMRI 

Subjects participated in one 1.5 h MRI session containing 6 func-
ional runs, where each run was 6.1 min. For a given run, the bar aper-
ures show contrast-reversing checkerboard stimuli. The checkerboard
ontrast pattern oscillated with a 5 Hz square wave, meaning 10 rever-
als per second. The bar aperture swept across the visual field in discrete
teps (1.5 s per bar position, 31.5 s per bar sweep, see Fig. 1 A) in 8 dif-
erent bar configurations (4 different orientations: 0°, 45°, 90°, 135°,
ith two step directions for each orientation). Two step directions are

equired for fMRI to avoid biased pRF parameter estimates due to the
ag of the hemodynamic response function. After the first, third, fifth
nd seventh bar sweep, there was a 22.5 s mean luminance or ‘blank’
eriod. In addition, each run started and ended with a 12 s blank period.
 fixation dot was presented in the center of the screen throughout the
un, switching between red and green colors (32 switches per run, av-
rage of 7.2 s). Subjects were instructed to fixate on the dot throughout
he run and report a switch in color with a button press. 

.3.2. Experimental design ‐ MEG 

All subjects participated in one 2 h MEG session containing 19 runs,
here each run was 3 min with short breaks of ∼1 min between runs.
he breaks were terminated when the subject indicated by button press
hat they were ready for the next run. For a given run, the bar apertures
howing the contrast-reversing checkerboard stimuli (10 Hz reversal
ate) swept across the visual field in discrete steps (1.3 s per bar po-
ition, 28.6 s per bar sweep) in 5 different bar configurations for a given
un (4 different orientations: 0°, 45°, 90°, 135° with two step directions
or 0° and one step direction for 45°, 90° and 135°) (see Fig. 1 B). MEG
uns did not require bar sweeps in both directions for each orientation,
ecause the measured magnetic flux does not contain a time-lag. For the
ame reason, a randomized sequence might be effective for MEG mea-
urements. Nonetheless, we chose to preserve many stimulus properties
atched to the fMRI experiment, while also shortening the experiment
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Fig. 1. Retinotopic mapping stimuli for fMRI and MEG experiments. (A) FMRI 
stimuli were used to map pRFs on the cortical surface. Contrast-reversing (100% 

contrast) checkerboard bars swept in discrete steps across the visual field (di- 
ameter = 20°, 1 bar step per TR, TR = 1.5 s), interleaved with blank periods 
(mean luminance). One run consisted of 8 bar sweeps along cardinal and off- 
cardinal axes in both directions. Subjects were instructed to fixate in the center 
of the screen and press a button every time the fixation dot changed color. Fix- 
ation dot is enlarged in this figure for visibility purposes. (B) Stimuli presented 
in the MEG experiment are used in the forward model to create predictions 
(hence ‘test’ stimuli). Stimuli were similar to fMRI (identical contrast, size, and 
contrast-reversal rate), except for its sequence and duration. One run contained 
5 bar sweeps (3 cardinal, 2 off-cardinal) with shorter bar step durations (1.3 s). 
Stimulus sweeps were interleaved with blank and blink periods. During blink 
periods, subjects were encouraged to make eye blinks to limit blinks during 
blank and stimulus periods. Blink periods were excluded in both data analysis 
and model predictions. 
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o allow for as many repeated runs per subject as possible. As a com-
romise between shortening and fidelity to the fMRI design, we reduced
he number of sweeps from 8 to 5, keeping bidirectional sweeps for one
rientation only. 

Before every bar sweep and after the last bar sweep, there was a
.6 s ‘blink’ period indicated by a mean luminance display with a small
lack square in the center of the screen and then a 3.9 s mean lumi-
ance or ‘blank’ period. A fixation dot was presented in the center of
he screen throughout the run, switching between red and green colors
32 switches per run, average of 5.6 s). 

Subjects were instructed to fixate on the dot throughout the run and
eport a switch in color (every few seconds) with a button press. Subjects
ere encouraged to blink during the blink period and minimize their
linking during the rest of the run. Blink periods were excluded from
nalyses. 

.4. Data acquisition 

.4.1. Data acquisition ‐ MRI 

Siemens Allegra 3T: Functional data were collected with a Nova Medi-
al phased array, 8-channel receive surface coil (NMSC072). BOLD fMRI
ata were acquired using a T2 ∗ -sensitive echo planar imaging (EPI)
ulse sequence (1500 ms TR, 30 ms TE, and 72° flip angle; 2.5 mm 

3 

sotropic voxels, with 24 slices). The slice prescription was placed ap-
roximately perpendicular to the calcarine sulcus and covered most of
he occipital lobe, and the posterior part of both the temporal and pari-
tal lobes. An additional field map was collected in the middle of the
RI session to correct functional data for B0 field inhomogeneity during

ffline image reconstruction using an in-house Center for Brain Imaging
lgorithm. 

Structural data were collected in the same (subject S2) or separate
RI session (subject S1) with a Nova Medical head transmit/receive coil

NM011). Data consisted of T1 weighted whole brain anatomical images
sing a 3D rapid gradient echo sequence (MPRAGE, 1 mm 

3 isotropic
oxels). Additionally, a T1-weighted “inplane ” image was collected
ith the same coil and slice prescription as the functional scans to aid
3 
lignment of the functional images to the high-resolution T1-weighted
natomical images. This scan had a resolution of 1.25 × 1.25 mm and a
lice thickness of 2.5 mm. 

Siemens Prisma 3T: Both structural and functional data were collected
ith a 64-channel phased array receive coil. BOLD fMRI data were ac-
uired using a T2 ∗ -sensitive echo planar imaging pulse sequence (1000
s TR; 30 ms echo time; 75° flip angle; 2 mm 

3 isotropic voxels, multi-
and acceleration 6). Two additional scans were collected with reversed
hase-encoded blips, resulting in spatial distortions in opposite direc-
ions. These scans were used to estimate the spatial distortions in the
PI runs and used to correct the EPI runs during preprocessing. 

Structural data were collected in the same session consisting of T1-
eighted whole brain anatomical images (1 mm 

3 isotropic voxels) using
 3D rapid gradient echo sequence (MPRAGE). No additional inplane im-
ge was needed for alignment for sessions in the Prisma scanner, because
he spatial resolution of the EPIs and the whole-brain coverage enabled
irect alignment between the functional images the whole brain T1w
natomical image. 

.4.2. Data acquisition ‐ MEG 

MEG data were acquired continuously with a whole head Yokogawa
EG system (Kanazawa Institute of Technology, Japan) containing 157

xial gradiometer sensors to measure brain activity and 3 orthogonally
riented reference magnetometers located in the dewar but facing away
rom the brain, used to measure environmental noise. The magnetic
elds were sampled at 1000 Hz and were actively filtered during ac-
uisition between 1 Hz (high pass) and 500 Hz (low pass). 

Before recording, each subject’s head shape was digitized with a
andheld FastSCAN laser scanner (Polhemus, VT, USA). Digital mark-
rs were placed on the forehead, nasion, left and right tragus and
eri ‑auricular points. To calibrate the digital head shape with the MEG
ensor space, five electrodes were placed on the identical location of five
igital markers (3 forehead and left/right peri-auricular points). Before
nd after the main MEG experiment, separate recordings were made of
he marker locations within the MEG dewar. 

.5. Data analyses 

.5.1. Reproducible computation and code sharing 

Nearly all analyses were conducted in MATLAB (MathWorks, MA,
SA), except for converting and preprocessing functional scans from

he Prisma MRI scanner, and interpolating the aggregate NYU 3T group
verage parameter maps onto individual’s cortical surface using Python.
he preprocessing analysis code, MEG forward model and data are pub-

icly available via the Open Science Framework upon publication (URL:
ttps://osf.io/c3hxj/ ). The code includes scripts to reproduce all figures
rom the minimally pre-processed data. Each data figure has a single
cript named makeFigureX (where ‘ X’ is the figure number). 

.5.2. MRI preprocessing 

Structural data (both MRI scanners): Structural T1-weighted scans
ere auto-segmented with FreeSurfer’s recon-all algorithm ( Dale et al.,
999 ; Fischl et al., 1999 ; Fischl and Dale, 2000 , 2001 ), available at
ttp://surfer.nmr.mgh.harvard.edu/ . For three subjects, small errors in
hite/gray matter voxel segmentation around the occipital pole were
anually corrected. Visually responsive regions of interest (ROIs) were
efined on the inflated cortical surface of individual subjects using
he probabilistic atlas of visual areas by Wang et al. (2015) resulting
n boundaries for areas V1-V3, hV4, V3A/B, VO1/2, LO1/2, TO1/2,
HC1/2, IPS0–5, SPL1, and FEF. 

Siemens Allegra 3T functional data: Using the Vistasoft toolbox avail-
ble at https://github.com/vistalab/Vistasoft , functional scans were re-
riented to a standardized NIfTI orientation (RIA to LAS), slice-time cor-
ected by resampling the time series in each slice within the 1.5 s-volume
o the center slice, and motion corrected by aligning all volumes of all

https://osf.io/c3hxj/
http://surfer.nmr.mgh.harvard.edu/
https://github.com/vistalab/Vistasoft
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cans to the first volume of the first scan using 3D rigid body align-
ent (6 DOF). The first 8 volumes of each functional scan were removed

o avoid unstable magnetization of the scanner. Functional scans were
ligned to the T1-weighted anatomical scan using a coarse, followed by
 fine, 3D rigid body alignment with the additional inplane scan (Vista-
oft’s alignvolumedata_auto ). 

Siemens Prisma 3T functional data: Functional scans were con-
erted from dicom into BIDS format ( Gorgolewski et al., 2016 ) us-
ng NYU Center for Brain Imaging in-house version of NIPY’s heudi-
onv, available at http://as.nyu.edu/cbi/resources/Software.html . The
ollowing in-house preprocessing workflow was implemented with
he nipype toolbox ( Gorgolewski et al., 2011 ), and is available
ia GitHub ( https://github.com/WinawerLab/MRI _ tools/blob/master/
reprocessing/prisma _ preproc.py ). Using the FSL toolbox ( Smith et al.,
004 ), all volumes from all EPIs were realigned to the single-band ref-
rence image of the first EPI scan. This single band reference image
as then registered to the additional spatial distortion scan with the

ame phase encoding direction. The two additional spatial distortion
cans with opposite phase-encoding direction were then used to esti-
ate the susceptibility-induced warp field using a method similar to
ndersson et al. (2003 ). Motion correction (3D rigid body, 6 DOF), reg-

stration to the spatial distortion scan and unwarping were then applied
n a single step to each volume of each EPI. The unwarped EPIs were
ligned to the high-resolution whole-brain T1w using FreeSurfer’s bbreg-

ster (6 DOF, rigid). 
Siemens Allegra & Prisma 3T functional data: Time series from EPIs

ere resampled to 1 mm 

3 isotropic voxels, i.e., the resolution of T1w
natomy, within the gray matter voxels using trilinear interpolation.
his step allows for easy comparison of functional to anatomical data
sing FreeSurfer’s tools. Time series within the gray matter voxels were
onverted into percent signal change by dividing the signal by its mean.
aseline drifts were removed from each run with high-pass temporal
ltering using 3 discrete cosine terms (0 cycles or ‘DC’; 0.5 cycle and
 cycle). At last, all 6 runs were averaged given that subjects saw the
ame stimuli within a dataset. 

.5.3. MEG preprocessing 

The FieldTrip toolbox ( Oostenveld et al., 2011 ) was used to read the
aw data files. For all subsequent MEG analyses, custom code was writ-
en in MATLAB. With use of the triggers from the stimulus presentation
omputer, MEG data were first divided into 1300 ms epochs ( i.e., match-
ng the duration of 1 bar step) for every MEG sensor. For all subjects,
poching resulted in an initial 2660 epochs per sensor: 22 consecutive
pochs per bar sweep, with 2 consecutive epochs for blink and 3 con-
ecutive epochs for blank periods before each sweep, and after the last
ar sweep of every run, 5 bar sweep directions, for 19 runs. To avoid
he transient response associated with a change in the stimulus (either
 change in bar position or from a blank period to a stimulus period),
e then shortened each epoch to 1100 ms, skipping the first 150 ms
nd last 50 ms of each 1300 ms epoch. We choose to remove the first
50 ms to skip one full cycle of the 10 Hz response (100 ms) plus 50 ms
o approximate the time for the neural response to reach the cortex. The
ast 50 ms were removed so that the total epoch length was an integer
umber of cycles at the steady-state frequency (10 Hz). 

Outlier epochs were removed in the following way. First, epoched
ata were high-pass filtered with a 1 Hz Butterworth filter (with a high-
ass amplitude of 3 dB and a passband frequency of 0.1 Hz and ampli-
ude of 60 dB). We then computed the variance within every 1100 ms
pochs (across time points), for each MEG sensor. We labeled an epoch
s ‘bad’ if its variance was 20 times smaller or 20 times larger than the
edian variance across all epochs and sensors. If more than 20% of the

pochs were labeled bad for a given sensor, then we removed the entire
ensor from analysis. If more than 20% of sensors contained the same
bad’ epoch, we removed the entire epoch from analysis ( i.e., for all sen-
ors). These criteria succeeded in identifying known outliers (5 sensors
4 
hat had long-term hardware problems as well as sensor/epoch com-
inations in which the responses became temporarily saturated due to
xternal noise), while at the same time avoiding the removal of unneces-
arily large amounts of data. If a given epoch was labeled ‘bad’ for some
ensors, but was not removed for all sensors, the data of the removed
ensors were replaced by the time series spatially interpolated across
earby sensors (weighting sensors inversely with the distance). We re-
oved on average ∼21% of each dataset, including all epochs from the
 sensors with long-term hardware problems. We tested the effects of
hanging the variance thresholds for removing individual sensor/epoch
ombinations, and the effects of changing the criteria for removing en-
ire epochs (all sensors) or entire sensors (all epochs) in an example
ubject with intermediate data quality (S5). Using the same settings as
or all other subjects resulted in 13.9% of data being labeled as ‘bad’,
ncluding 6 sensors. Adjusting the lower variance bound did not affect
he percentage of data labeled as ‘bad’. For the upper variance bound,
 more liberal (10 ×) or more conservative (40 ×) threshold either in-
reased by 7.6% or decreased by 1.6% percentage of ‘bad’ labeled data,
espectively. Increasing the percentage to mark entire sensors or epochs
s ‘bad’ did not affect the number of ‘bad’ sensors and a less than 1%
ecrease in ‘bad’ epochs. Decreasing the percentage from 20 to 10%
so more liberal) marked an additional 2 sensors and ∼3% of epochs
s ‘bad’. Importantly, none of these changes in outlier criteria caused a
ubstantial change in model performance nor affected our results. 

We used the Noisepool-PCA algorithm to increase the signal-to-noise
atio (SNR) of our MEG time series ( Kupers et al., 2018 ). This algorithm
as adapted from an fMRI algorithm called GLMdenoise ( Kay et al.,
013 ). In short, for each subject the algorithm defines a noise pool: a
ubset of sensors that contains little to no 10 Hz visually evoked steady-
tate response. Time series within each epoch and sensor of the noise-
ool were then filtered to remove all 10 Hz (and harmonics) compo-
ents. Using principal components analysis (PCA), we defined global
oise regressors from the filtered noise pool time series. For each sub-
ect, the first 10 PCs were used to create 10 new denoised datasets: the
rst denoised dataset had PC1 projected out of the data in each sen-
or, epoch by epoch. The second denoised dataset had PC1 and PC2
rojected out, etc. For each denoised dataset, we calculated the median
 

2 across bootstrapped epochs. The optimal number of PCs to project
ut was the smallest number of PCs that resulted in a denoised data
ith a median R 

2 within 5% of the maximum possible median R 

2 of 10
atasets. This resulted in removing 6 PCs on average across subjects,
anging between 2 and 8 PCs. At last, we reshaped the denoised MEG
ata into a 4D array: t (time points) by k (epochs) by m (sensors) by r
runs). 

.5.4. MEG data quality check 

We calculated two parameters to check the quality of the measured
EG data: 10 Hz coherence and split-half reliability of the 10 Hz steady-

tate visually evoked responses. The coherence of the 10 Hz steady-state
isually evoked fields (SSVEFs) provides an estimate of the signal-to-
oise ratio of the steady-state response within stimulus periods. The
0 Hz SSVEF coherence was defined by dividing the average 10 Hz am-
litude across epochs of all runs by the average amplitudes of 10 Hz and
eighboring frequencies ( i.e., 9 to 11 Hz) across epochs of all runs. 

The second metric was the split-half reliability of the 10 Hz steady-
tate amplitudes, providing an estimate of how reliable the steady-state
esponses are across runs. We computed the split-half reliability by di-
iding the 19 repeated runs into two groups. After taking the sensor-
ise average time series across runs for each of the two data splits, we
pplied the FFT to the two run averages and extracted the 10 Hz am-
litude per epoch. The 10 Hz amplitudes for the first data half were
hen pairwise correlated to the 10 Hz amplitudes for the other data half
Pearson’s 𝝆). This split-half reliability procedure is repeated 1000 times
nd summarized as the mean correlation across repetitions, resulting in
ne split-half reliability sensor map per subject. 

http://as.nyu.edu/cbi/resources/Software.html
https://github.com/WinawerLab/MRI_tools/blob/master/preprocessing/prisma_preproc.py
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.5.5. MRI ‐MEG head model and alignment 

The head model, also referred to as the ‘lead field’ or ‘gain matrix’,
escribes the contribution of cortical locations (or ‘sources’) to the activ-
ty at each individual MEG sensor. To generate this head model, we align
he individual’s anatomy and the MEG helmet in a common coordinate
pace using the Brainstorm toolbox ( Tadel et al., 2011 ). 

Specifically, we defined the nasion and left/right peri-auricular
oints in the T1-weighted image of each individual subject. We used
rainstorm’s automated alignment algorithm to align the fiducials
arked in the T1-weighted image, the recorded locations of electrodes

ttached to the subject’s face while lying in the MEG scanner, and points
n the 3D head shape. Small manual translational adjustments were ap-
lied to the rotation matrix if necessary. After alignment, we computed
he individual subject’s head model using Brainstorm’s implementation
f the overlapping spheres algorithm ( Huang et al., 1999 ) using the sub-
ect’s FreeSurfer pial surface ( ∼300,000 vertices per hemisphere). The
verlapping spheres algorithm fits a different sphere to the subject’s
kull for each sensor. We choose the overlapping spheres algorithm for
ts low computational cost while having an accuracy comparable to the
ore biologically accurate but computationally demanding Boundary
lement Model (BEM) ( Kybic et al., 2005 ; Gramfort et al., 2010 ). We did
ot downsample the number of vertices as is often a standard implemen-
ation in MEG/EEG software packages, as we do not need to reduce com-
utational cost for our forward model (in contrast to inverse modeling),
nabling us to avoid interpolation errors introduced by downsampling
f the pRF parameters from a high to a low-resolution cortical surface.
e constrained our head model to one perpendicular dipole per vertex,

esulting in a matrix of FreeSurfer vertices ( ∼300,000, depending on the
ubject) by 157 sensors. 

.6. A stimulus ‐to ‐sensor model for MEG responses 

We developed a modeling framework that learns cortical pRFs from
MRI data, and then uses a biophysics model (gain matrix) from anatom-
cal MRI co-registered to MEG data. The model takes as input a visual
timulus and predicts as output the MEG SSVEF amplitude at each sensor
nd each stimulus position. The voxel-wise pRF parameters, fit to fMRI
ata, are projected to the cortical surface and used to predict neural pop-
lation responses to the MEG stimuli. These predicted values are in the
orm of one number per voxel per bar position. Because both our stimu-
us and our pRFs are defined as non-negative, the predicted cortical re-
ponses are all also non-negative. These predictions are then projected
o the MEG sensor space using the gain matrix from the overlapping-
pheres head model ( Huang et al., 1999 ). The values projected to the
ensors are signed because the gain matrix is signed. These predicted
EG data are compared to the measured phase-referenced steady-state
EG response using a linear regression, fitting a reference phase 𝜃ref 

nd a gain parameter 𝛽 per sensor to maximize the coefficient of de-
ermination ( R 

2 ) ( Fig. 2 , training model). The optimal reference phases
ere then cross-validated across data halves to recompute the phase-

eferenced 10 Hz steady-state responses and averaged across halves.
he corresponding gain factors were averaged across halves and used
o scale the initial predicted sensor responses. A final goodness of fit
f the average predicted MEG responses was computed on the average
easured MEG responses ( Fig. 2 , test model). We explain each of these

teps in detail below. 

.6.1. Step 1.1: solve pRFs with fMRI 

Using the Vistasoft toolbox ( https://github.com/vistalab/Vistasoft ),
e solved linear, circularly symmetric 2D Gaussian pRF models on the

unctional MRI data, as previously described in Dumoulin and Wan-
ell (2008) . In brief, pRF models were solved by a two-stage coarse-
o-fine optimization procedure on the gray matter voxels, using the bi-
arized MRI stimulus apertures and Vistasoft’s built-in ‘difference be-
ween two gammas’ hemodynamic response function. The first stage of
he optimization procedure started with a coarse grid-fit. The best fitting
5 
arameters for each voxel from the coarse grid-fit were used as the seed
or the fine fit. This fitting procedure resulted in an estimated preferred
RF size ( 𝜎, 1 SD of 2D Gaussian), center location ( x, y ), gain (or scal-
ng factor), and variance explained for every voxel. The pRF parameters
omputed at gray matter voxels are interpolated to surface vertices. 

.6.2. Step 1.2: smooth pRF parameters across gray matter voxels 

The pRF parameters are interpolated from the gray matter voxels
 i.e. , voxels comprising the ‘cortical ribbon’) to the surface vertices us-
ng a nearest neighbor interpolation algorithm. This choice was made
ecause of technical constraints within the Vistasoft toolbox. One could
lternatively change the order of operations and first interpolate the
ime series to the surface and then solve the pRF parameters. The results
ould likely be similar in that we used nearest neighbor interpolation

o project pRF solutions from cortical voxels to surface nodes. To re-
uce sensitivity to noise, we smooth pRF parameters across the cortical
urface by calculating a weighted average over a normalized truncated
aussian kernel ( Andrade et al., 2001 ). This procedure applies surface-
riented smoothing using the geodesic rather than Euclidean distance,
especting the topology of the cortical surface. The Gaussian kernel (ap-
roximately, a FWHM of 3 mm at 1 mm 

3 voxel resolution) is created at
very gray matter vertex. Neighboring vertices in which estimated pRF
odel fit did not explain any variance of the data ( i.e., a variance ex-
lained of 0%) were excluded. We smoothed the position ( x, y ) and size
 𝜎) parameters as well as a proxy for the pRF gain (scale factor, or “beta
eight ” in the Vistasoft code). Although the pRF model is linear, it is not

inear with respect to its parameters, and smoothing of the parameters
an have unwanted effects, particularly in the amplitude of the response
controlled by the pRF gain). This is due in part to the fact that the soft-
are implementation defines the pRFs as Gaussians with unit height at

he pRF center, such that the pRF volume within the stimulus aperture
epends on the size of the pRF and the degree of overlap between the
RF and the stimulus aperture. To ensure that the smoothing procedure
esulted in smoothing of the time series amplitudes, we used the pRF
odels to predict the time-course amplitude (using the fitted beta pa-

ameter), and then smoothed the maxima of these predicted time-course
mplitudes over the surface. 

.6.3. Step 2: predict neural responses to MEG stimuli from pRF parameters

To predict the steady-state responses in MEG sensors, we first cre-
ted a predicted response from estimated pRF parameters on the cortical
ertices. Vertices were constrained by those whose pRF parameters ex-
lained more than 10% of the variance in the MRI data. The 10% thresh-
ld was chosen to exclude vertices that are likely to reflect noise and
re not visually responsive (or incoherent with the stimulus). Moreover,
e restricted the vertices to only those whose pRF centers fell within
ur stimulus aperture (10° of visual angle), and those which fell inside
he visual ROIs from Wang et al. (2015) probabilistic atlas. For all other
ertices, the predicted response was set to 0. For each vertex, a 2D Gaus-
ian receptive field was constructed using its preferred center and size.
he height of this receptive field was scaled by the vertex’s pRF gain.
 dot product of these receptive fields and the binarized MEG stimulus
esulted in the predicted surface response (one value per aperture posi-
ion). As mentioned earlier, blink periods were excluded. Blank periods
ere predicted as zero responses, assuming that blank screen epochs
licit a negligible 10 Hz steady-state visually evoked response with a
andom phase. Vertices with a maximum predicted response larger than
0 times the median of all vertex maximum responses were considered
utliers and excluded. This criterion was implemented ad hoc, after in-
estigating the predicted time series of individual subjects and finding
everal pRF time series with unrealistically large amplitudes ( > 100%
ignal change). This threshold had no effect on two datasets and re-
oved a very small amount of data for the other eight datasets (less

han 0.3% of vertices with a predicted cortical response per subject). 

https://github.com/vistalab/Vistasoft
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Fig. 2. MEG forward modeling approach. The model starts with preprocessed fMRI and MEG data and their corresponding stimuli as inputs. Train model. Step 

1: FMRI stimuli are binarized into apertures and used to solve pRFs within each cortical location and projected to the cortical surface. Step 2: Estimated pRFs are 
multiplied with MEG stimulus apertures to predict time series on the cortical surface. Step 3: Predicted cortical responses are multiplied with the gain matrix from 

the MEG forward model to get predicted MEG responses. The gain matrix describes the contribution of each source to magnetic fields measured in MEG sensors and 
is computed by the overlapping spheres algorithm ( 1 Huang et al., 1999 ). Predicted responses are fitted to measured MEG responses, using a split-half cross-validation 
procedure. Step 4.1: MEG training runs are averaged and its time series are transformed to the Fourier domain. Step 4.2: 10 Hz amplitudes and phases are extracted 
per epoch and sensor. Step 4.3: 10 Hz phase and amplitudes are combined into phase-referenced 10 Hz SSVEF amplitudes by fitting the predicted MEG responses 
from pRFs to measured MEG responses. This model fit uses two free parameters (gain 𝛽 and reference phase 𝜃ref ) and is optimized by finding the reference phase 
where the prediction explains most variance in the data. Test model. Both free parameters are cross-validated: the optimal reference phases from training are used 
to compute phase-referenced 10 Hz SSVEF responses of the test runs as in Step 4. The gain parameters are summarized by the weighted average across the two 
training iterations and used to scale the predicted MEG responses. At last, measured MEG responses are averaged across split-halves and compared to predicted MEG 

responses using the coefficient of determination ( R 2 ). 

6 
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.6.4. Step 3: predict MEG sensor responses from neural responses 

The matrix containing the predicted pRF responses on the cortical
urface S was then multiplied with the gain matrix from the MEG head
odel G, resulting in predicted MEG sensor responses Ŷ ( Eq. (1) ). We

ompared these predicted MEG sensor responses to the measured MEG
esponses. 

̂
 = 𝐺 ⋅ 𝑆 (1)

Where Ŷ (k epochs by m sensors) are the predicted pRF responses
or MEG sensors, G ( n vertices by m sensors) is the head model, and S
 k epochs by n vertices) are the predicted pRF responses on the cortical
urface. 

.6.5. Step 4: fitting the model to MEG training data 

The observed MEG responses were computed as the phase-referenced
0 Hz steady-state visually evoked fields (SSVEFs), using cross-
alidation. Phase referencing the amplitude is done when the expected
scillations can be either positive or negative, which can occur because
he gain matrix created by the head model is signed ( i.e., contains both
ositive and negative numbers). Moreover, the reference phase itself
ay be of interest, as it can capture differences in timing between sen-

ors driven by different regions of cortex, with different response prop-
rties. 

For each subject, epoched MEG data were split into two halves: a
raining half containing the 10 odd runs and a test half containing the
 even runs. We then computed the sensor-wise average time series
ithin each epoch across training runs and transformed the average to

he Fourier domain by applying the FFT to the time series data ( Fig. 4 ,
tep 4.1). We extracted both amplitude and phase information from the
pectral MEG data at 10 Hz ( i.e., the contrast-reversal rate of the stimu-
us) to compute a phase-referenced steady-state response ( Fig. 4 , Step 4.2).
o calculate this response, we describe the 10 Hz Fourier component
f a given epoch as a vector with amplitude length and phase angle
 i.e., cosine of the phase). We then scaled the 10 Hz amplitude by the
ifference in angle between the measured phase and a reference phase

ref resulting in the phase-referenced steady-state responses Y , for every
ensor m and epoch k ( Fig. 4 , Step 4.3). The reference phase 𝜃ref was ob-
ained separately for every sensor by choosing the phase leading to the
ighest variance explained in the MEG time series after iterating over
ll 100 possible reference phases. The variance explained was computed
y a linear regression of the model predictions to the phase referenced
ime series with one free parameter 𝛽 ( i.e., a scale factor or gain). This
cale factor brings the predicted time series into units of femto-Tesla. Fits
ere optimized by maximizing the coefficient of determination ( R 

2 ) be-
ween model and data ( i.e., the residuals sum of squares divided by the
otal sum of squares). After iterating over all possible reference phases,
e choose the one whose MEG time series was best matched to the pre-
icted MEG responses by linear regression constrained to positive scale
actors (largest R 

2 ). (We constrain to positive scale factors for consis-
ency, because for every reference phase, there is another phase 180°
part which makes the identical predictions up to a sign flip). 

.6.6. Test model: comparing predicted to measured MEG responses 

The model predictions were tested using a split-half cross-validation
pproach. Once the optimal reference phases were selected for every
ensor for the training half, they were applied to compute the phase-
eferenced MEG 10 Hz steady-state response in the test half (see Eq. (2) ).
his was repeated for each of the two split halves. 

 𝑚,𝑘 = 𝐴 𝑚,𝑘 ( test set ) ⋅ cos 
(
𝜃𝑚,𝑘 ( test set ) − 𝜃ref ,𝑚 ( trai ning set ) 

)
(2) 

Where Y m,k is the phase-referenced MEG 10 Hz steady-state response
f the test runs, for every epoch k and sensor m . A m,k is the average 10 Hz
mplitude across test runs, for every epoch k and sensor m. 𝜃m,k is the
verage 10 Hz phase across all test runs, for every epoch k and sensor
. 𝜃ref , m 

is the reference phase for every sensor m , computed by fitting
he training data to the predicted responses. 
7 
Training both data halves resulted in two sets of 𝛽 parameters cor-
esponding to the model fit with the optimal reference phase. Because
he predicted cortical responses were identical for both data halves, we
caled the predicted MEG responses with the weighted average of the
wo 𝛽 parameters, resulting in one predicted time series per sensor. We
sed a weighted average because the two halves had an unequal number
f runs. 

The entire cross-validated phase-referencing procedure resulted in
wo arrays: one with phase-referenced SSVEF responses ( k epochs by 2
roups of runs by m sensors) and one with scaled predicted MEG re-
ponses ( k epochs by m sensors). Measured MEG data were averaged
cross the two run groups, resulting in a matrix of k epochs by m sen-
ors. To summarize the goodness of fit across the entire data set, we
omputed the coefficient of determination ( R 

2 ) for the average predicted
EG responses to the average measured MEG responses. 

.6.7. Sensitivity of prediction to rotating pRF centers 

To evaluate how sensitive our model predictions are to pRF parame-
ers estimated by fMRI, we systematically altered the fMRI pRF parame-
ers. We estimate the sensitivity to pRF center position by systematically
otating the pRF centers around the fovea. We do so by first calculating
he polar angle for a given vertex using the x and y pRF parameters, and
hen adding an angle rotation from –180° to 180° in one of 8 equal steps
f 45°. For every rotation, we fit and test the model in the same way
s we did for the data without rotation, including fitting the reference
hase and scale factor per sensor and evaluating by cross-validation. 

.6.8. Sensitivity of prediction to scaling pRF sizes 

We estimate the sensitivity of our model to pRF size by systemat-
cally scaling the originally estimated pRF size ( 𝜎). We scaled original
RF sizes from 5 times smaller to 10 times larger, in 19 log-spaced steps,
here a scale factor of 1 is the pRF size estimated with fMRI. Similar

o the rotation manipulation, we re-computed the predicted MEG re-
ponses and optimal reference-phases after applying a particular scale
actor. 

.6.9. Sensor selection for summarizing results pRF position or size 

anipulations 

To evaluate the effects of rotating pRF centers and scaling pRF size,
e average the variance explained across a subset of sensors for each

ubject. We use two approaches for sensor selection to check for robust-
ess of our results. One approach is to use model accuracy. To select
he subset of sensors, we take the union of the 10 sensors with highest
ariance explained by the model in each of the rotation steps or each
caling step. This results in a minimum of 10 sensors per subject, but
ypically more because the top 10 sensors are not the same across the
RF manipulations. This selection method is unbiased toward any par-
icular rotation angle or scale factor and is agnostic about the spatial
ocation of the sensors. By selecting the top 10 sensors, we avoid in-
luding large amounts of noise from visually unresponsive sensors. We
hose 10 out of consistency with prior work ( Kupers et al., 2018 ) and
ecause it approximately matched our visual inspection of the number
f responsive sensors. We also checked the effects of selecting the top 5
r the top 15. 

The second approach is data-driven and does not use the pRF model.
or this approach, we select the 10 sensors with the highest split-half
eliability of the 10 Hz SSVEF signal. This results in exactly 10 sensors
er subject. 

Data were summarized for individuals by selecting sensors using one
f the two approaches described above. This resulted in a matrix of vari-
nce explained (number of rotation angles or scale factors by selected
ensors). We then take the mean and standard error of the mean across
elected sensors for each rotation angle or scale factor as our summary
etric. 
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.7. Group average model fits 

A challenge in group analysis of MEG or EEG is that the same sensor
n two subjects do not sample from the identical parts of the brain. An
dvantage of a forward model of the MEG signal is that group average
ata can be computed in the model space, fit separately for each subject.
he sensor-wise average prediction across subjects accounts for the dif-
erences in cortical sampling between subjects, because each prediction
s based on that subject’s fMRI data, head model, and MEG training data.
he average prediction can then be compared to the average group data.
e refer to this method as average-then-goodness-of-fit . This method pro-

ides a compact summary of the results in sensor space. However, the
nterpretation is not straightforward since the same sensors do not pool
rom the same brain regions across subjects. 

We computed the average-then-goodness-of-fit group result by taking
ach subject’s cross-validated predicted MEG responses (thus scaled by
he individual subject’s gain factors, 𝛽) and observed MEG responses
phase-referenced using a reference phase 𝜃ref optimized to the individ-
al subject’s predicted MEG responses). We then average the predicted
EG responses across subjects and separately average the observed MEG

esponses across subjects, resulting in two matrices: both k epochs by m
ensors. We compare the goodness of fit using the coefficient of deter-
ination. In the case where we altered the pRF parameters, for each

otation or scaling iteration, we bootstrapped the average measured
nd predicted MEG responses across subjects 10,000 times. We com-
ute the coefficient of determination between the two averages for each
ootstrap, resulting in a variance explained distribution for each sen-
or. From this distribution, we extracted the mean variance explained
nd the 14th and 86th percentile for upper and lower bounds of the
8%-confidence intervals. 

We also implemented a second group average which reverses the
rder of operations. Rather than computing the model accuracy of the
veraged data, we compute the average model accuracy across individ-
al subjects. We refer to this method of computing the group average as
oodness-of-fit-then-average . In contrast to the first method, the sensors
sed to compute model accuracy for this method differ across subjects.
gain, we bootstrapped across subjects 10,000 times and computed the
verage and 68%-confidence intervals across bootstraps. 

.7.1. Model predictions from group average pRF parameter maps 

The forward model could also be implemented without collecting
ubject specific fMRI, for example with a retinotopy template or av-
rage group data from a different study. For comparison, we derived
verage pRF parameter maps from an aggregate 3T retinotopy dataset
ith 44 subjects ( Himmelberg, Kurzawski et al., 2021 ). Data were col-

ected at the same NYU scanner facility using the 3T Prisma MRI scanner
ith approximately the same field-of-view as the MEG experiment, but
ith different stimuli. Subjects in this aggregate dataset viewed 6 runs
f colorful sweeping bar stimuli, similar to those used for the Human
onnectome Project 7T retinotopy dataset ( Benson et al., 2018 ). PRF
odels were solved within individual subjects using the same Vistasoft

oftware. The x, y , and 𝜎 parameter maps of each individual subject
ere interpolated onto a template cortical surface (FreeSurfer’s fsaver-

ge) and then averaged across subjects. These group-average parameter
aps were then interpolated onto each of our 10 original individual

ubject’s mid-gray cortical surface using Neuropythy’s interpolate with
he default nearest-neighbor method ( https://github.com/noahbenson/
europythy ) ( Benson and Winawer, 2018 ). Both interpolation steps–the
4 individuals mapped onto fsaverage to create the template, and the ap-
lication of the template to the individuals in the MEG experiment–used
earest-neighbor interpolation. 

While it is reasonable to assume that the x, y , and 𝜎 pRF parameters
ill be similar for the large retinotopy dataset and for the MEG experi-
ents, the gain may differ substantially. For example, the fMRI retino-

opy dataset was measured with colorful static stimuli containing objects
8 
nd textures, whereas the stimuli for the MEG experiment were achro-
atic contrast-reversing checkerboards. Different visual field maps may

e more responsive to one of these stimulus types than the other. For this
eason, we did not compute pRF scale factors from the NYU retinotopy
atabase with 44 subjects. For simplicity, we assumed that the response
ain was uniform within a map (each ROI in the Wang et al. (2015) atlas)
ut could differ between maps. To derive a gain for each map, we aver-
ged the response gain across the 10 subjects with fMRI data collected
or this paper with drifting checkerboards. We took the median response
rom voxels within a map for each subject, defining the response as the
aximum predicted percent signal change in the predicted cortical time

eries. This resulted in a matrix of median values, with a size of 10 sub-
ects by 25 ROIs. Median values were then averaged across subjects per
OI. To apply the template in our forward model, all vertices within a
iven ROI were given the corresponding average gain value. This corti-
al map was used to scale the maximum predicted cortical pRF responses
econstructed from the average x, y , and 𝜎 pRF parameter maps from
he aggregate NYU 3T retinotopy dataset. Once the average pRFs were
econstructed on an individual subject’s cortical surface, all following
nalysis steps of our forward model were identical. 

. Results 

In separate MRI and MEG sessions, subjects viewed high contrast
etinotopic bar stimuli traversing across the visual field, where the
heckerboards inside the aperture reversed contrast 10 times per second.
ata from the MRI session were used to reconstruct population receptive
elds (pRFs) on the cortical surface for each individual subject, using the
odeling approach described by Dumoulin and Wandell (2008) . These
RFs on the cortical surface were the building blocks of our forward
odeling approach, as they were used to predict the observed MEG re-

ponse. Below we describe the observed steady-state components within
he MEG data and report the MEG forward model performance using the
RFs estimated from the MRI session. Finally, we show the effect of ar-
ificially altering the initially estimated pRFs on our MEG model. 

.1. Retinotopic stimuli produce reliable steady ‐state responses in posterior 

EG sensors 

MEG data from individual subjects were divided into 1.1 s non-
verlapping time bins (epochs), for every sensor and run. These epochs
ontained either a contrast-reversing bar at a particular location in the
isual field (‘stimulus periods’), a zero-luminance screen (‘blank peri-
ds’), or a square stimulus prompting subjects to rest and make excessive
ye blinks (‘blink periods’). The latter were removed from all following
nalyses. Both stimulus and blank periods were averaged across multiple
uns, before transforming the MEG time series to the Fourier domain. 

We found a large steady-state response at 10 Hz (the contrast-
eversal rate of the stimuli) and multiples of 10 Hz ( i.e., harmonics) dur-
ng stimulus periods compared to blank ( Fig. 3 A). These 10 Hz steady-
tate visually evoked fields (SSVEFs) were largest in posterior MEG sen-
ors. To estimate how robust 10 Hz steady-state responses were across
dentical stimulus runs, we computed two data metrics of the 10 Hz
mplitudes: its coherence and split-half reliability. 

The coherence metric provides a signal-to-noise ratio of the steady-
tate response within stimulus periods for every MEG sensor, without
egard to the particular stimuli giving rise to the response. This metric
s computed by dividing the average 10 Hz amplitude of all stimulus
eriods by the sum of the amplitudes from 9 to 11 Hz. We found that
he coherence of the steady-state response is largest in posterior MEG
ensors ( Fig. 3 B), in line with the expectation that posterior sensors are
ocated over the visual cortex and maximally driven by the stimulus
ontrast-reversals. 

The specific 10 Hz coherence sensor topography varied across sub-
ects. For example, subject S1 ( Fig. 3 B, left panel) showed extended

https://github.com/noahbenson/neuropythy
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Fig. 3. Steady-state visually evoked amplitudes from the MEG experiment. (A) Example spectra from two posterior MEG sensors (location indicated by dot on 
schematic head) and two subjects (S1 and S9). Fourier transformed stimulus periods (black line) show a large peak at the contrast reversal rate (10 Hz, i.e., the 
steady-state visually evoked field or ‘SSVEF’) and multiples of 10 Hz (harmonics) compared to blank periods (gray line). Note that these amplitudes contain only 
positive values and are not yet referenced by the corresponding phases. (B) MEG sensor topography of 10 Hz SSVEF coherence (10 Hz amplitude divided by mean 
of 9 to 11 Hz amplitude) for subjects S1 and S9 and sensor-wise average across all subjects ( N = 10). (C) Split-half reliability of the 10 Hz SSVEF amplitudes for 
subjects S1 and S9 and sensor-wise average across all subjects ( N = 10). 

r  

w  

a  

v  

c  

i  

t
 

t  

r  

t  

a  

i  

m  

w  

w  

h  

M  

a  

t  

b  

p

3

s

 

t  

n  

l  

c  

B  

s  

fi  

i  

M  

i  

u  

p  

W  

b  

w  

 

v  

f  
egions of high 10 Hz coherence in lateral and anterior MEG sensors,
hereas subject S9 did not ( Fig. 3 B, middle panel). When sensor-wise
veraging 10 Hz coherence topographies across subjects, the coherence
alues are highest in posterior sensors ( Fig. 3 B, right panel). This indi-
ates that across subjects 10 Hz steady-state amplitudes are most robust
n posterior MEG sensors, as expected due to proximity of these sensors
o visual cortex. 

To estimate how reliable the 10 Hz steady-state amplitudes are across
he 19 repeated runs in the MEG experiment, we computed the split-half
eliability. Unlike the coherence metric, which average across epochs,
he split-half reliability was sensitive to the specific pattern of responses
s a function of bar position. We found that split-half reliability is largest
n posterior MEG sensors (up to Pearson’s 𝝆 = ∼80%) in both individual
aps and across-subjects maps (see Fig. 3 C). Many posterior sensors
ith high reliability overlap those sensors with the largest coherence
ithin individual subjects (see Supplementary Fig. S1). The sensors with
igh 10 Hz coherence tend to spread out more to lateral and frontal
EG sensors compared to those with high split-half reliability, which

re confined to posterior MEG sensors. A possible explanation for this
opography discrepancy is that some sensors in anterior locations are
roadly sensitive to the stimulus (high coherence) but have little to no
osition sensitivity (low split-half reliability). 
9 
.2. Forward model predicts phase-referenced MEG responses in posterior 

ensors 

Thus far, we focused on the 10 Hz steady-state spectral ampli-

udes and ignored the corresponding 10 Hz phases . This phase compo-
ent can vary across epochs and MEG sensors due to processing de-
ays in the visual system and depend on stimulus features, such as
ontrast ( Shapley and Victor, 1978 ) and eccentricity ( Jeffreys, 1971 ;
urkitt et al., 2000 ; Ales et al., 2013 ; Inverso et al., 2016 ). Because our
timulus was a bar sweeping in different directions across the visual
eld and likely activated both early and later visual areas which differ

n response timing, we expected variability in the 10 Hz phases across
EG sensors. Additionally, the gain matrix from the MEG head model

s signed, causing predicted MEG responses to be signed. Therefore, to
se all available information in the MEG data, we combined 10 Hz am-
litudes and phases into 10 Hz phase-referenced steady-state responses.
e did so by scaling the 10 Hz amplitudes by the cosine of the difference

etween the observed phase and a reference phase (see Methods ). This
ay both predicted responses and measured MEG responses are signed.

To predict the MEG responses to retinotopic stimuli for each indi-
idual subject, we developed a forward model ( Fig. 2 ). In short, our
orward model predicted the MEG responses for every sensor by first
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Fig. 4. MEG forward model captures variance in observed MEG responses across posterior sensors. (A) Left panels show two example time series of observed 10 Hz 
phase-referenced MEG responses (black dots with dashed line) and predicted MEG responses by the model (red line). The predicted MEG responses explain 60% and 
58% of the variance in the observed MEG responses. Data are from two posterior sensors (indicated by the black dot on the head schematic) in two different subjects 
(top: S1, bottom: S9). Every dot in the observed MEG time series is the phase-referenced 10 Hz amplitude of a single stimulus bar position. Light and dark gray boxes 
indicate blink and blank periods, respectively. Blink periods were excluded from the analysis, blank periods were modeled as zeros. (B) Topographic sensor maps 
of variance explained by forward model. Left side shows the same two subjects as in panel (A) (top: S1, bottom: S9). Right side shows average-then-goodness-of-fit 
group result ( N = 10). In this case, measured MEG data are averaged across subjects and compared to the average across subject’s model fits (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.). 
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ultiplying pRF models estimated from fMRI at every cortical location
ith the MEG stimulus, for every time point. We then multiplied the

esulting pRF time series at every cortical location with the gain matrix
rom the MEG head model based on subject’s anatomy and head posi-
ion in the MEG. For the measured MEG responses, we combined ampli-
ude and phase information into a phase-referenced amplitude for every
ensor. We used split-half cross-validation to determine the optimal ref-
rence phase for every MEG sensor by fitting observed MEG responses
o the predicted MEG responses, optimizing for variance explained by
he model. By splitting the MEG runs into two groups, reference phases
f the first half were used to compute the phase-referenced SSVEFs for
he second half. Finally, to determine the overall goodness of fit of the
odel, we compared the predicted time series with the observed phase-

eferenced 10 Hz SSVEFs averaged across both split-halves for every
EG sensor. 

By combining local pRFs on the cortical surface with the biophys-
cal head model, our forward model was able to capture ∼60% of the
ariance in phase-referenced steady-state MEG data in posterior MEG
ensors ( Fig. 4 ). The predicted MEG responses in sensors with high vari-
nce explained usually contained five peaks across the 154 s experiment,
orresponding to the five orientated bar sweeps across the visual field.
his result was found both at the group level ( Fig. 4 B, left panel), as well
s individual subject level (Supplementary Fig. S2). Those MEG sensors
ith highest variance explained by the forward model approximately
verlap with subset of posterior sensors that contain large 10 Hz coher-
nce and split-half reliability values on an individual subject basis (see
ig. 3 and Supplementary Figs. S1, S2). 

One advantage of our forward model is that individual subject’s pre-
icted MEG responses can be averaged to compare against the average
bserved data. We find that the average-then-goodness-of-fit group re-
ult could explain up to ∼70% of the variance in the average time series
f several posterior sensors ( Fig. 4 B, right panel). Because averaging
cross subjects’ data reduces measurement noise, the model fit is able
o capture more variance in those sensors with high signal (posterior
EG sensors), compared to individual subjects. We also observe that

he average-then-goodness-of-fit group result shows an asymmetry in
aptured variance explained, with higher variance explained on the left
10 
ompared to right. However, it seems unlikely to reflect a general bias
n the population, as individual subject maps do not support a system-
tic asymmetry in model accuracy between left and right sensors (Sup-
lementary Fig. S2). Rather, this more likely arises from better spatial
lignment of sensors with good data on one side of the helmet than the
ther. 

.3. Forward model predictions are sensitive to changes in pRF parameters 

Because MEG sensors pool over large regions of the cortex, the mea-
ured steady-state responses are the sum of many cortical pRF responses
ampling visual space. This large pooling function poses the question:
o what extent do the parameters of cortical pRFs in our forward mod-
ling approach affect the accuracy of the predicted MEG responses? In
he most extreme scenario, a forward model that uses scrambled pRFs
cross the cortex might predict MEG responses as well as the initially
stimated pRFs. This would occur if each sensor pooled signals about
qually from all of visual cortex. In this case, the MEG responses only
ontain information about stimulus onset and offset, not the specific
patial positions. A more likely possibility is that MEG sensor responses
arry some information about the visual field position of stimuli, but at
 lower spatial resolution compared to pRFs estimated by fMRI. In this
ase, it is an empirical question how much MEG sensor responses are
ffected by slight changes in underlying pRF models. 

To quantify the extent to which our model accuracy depends on the
easured pRF parameters, we artificially changed the pRF model pa-

ameters estimated from fMRI. First, we systematically alter pRF po-
itions on the cortex, such that pRFs rotate around the fovea, leaving
RF sizes intact. Then, we systematically scale pRF sizes, leaving pRF
ositions intact. In both cases, we observe that the forward model pre-
ictions generally become less accurate. 

.3.1. MEG data are best predicted by pRF positions estimated from fMRI 

When rotating pRFs away from their estimated positions, the vari-
nce explained by the forward model decreases. For example, in subject
1 variance explained by the model decreased by ∼23% when rotat-
ng the pRFs from 90° clockwise or counter-clockwise around the fovea
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Fig. 5. Systematic variation of pRF position decreases ability to explain variance in data by model predictions. (A) Variance explained by the forward model as a 
function of pRF center position for two subjects (top: S1, bottom: S9). The initial pRFs estimated using fMRI (0°, black vertical line) were systematically rotated 
around the fovea, by − 180° to 180° from initial pRF position in steps of 45°. Predicted MEG responses were recomputed and fitted to observed MEG responses for 
each rotation condition. Data were summarized as the average across the union of 5 (purple line), 10 (red line), or 15 sensors (blue line) with the highest variance 
explained for each rotation condition ( i.e., including all sensors that are among the 5, 10, or 15 sensors with highest variance explained for at least 1 rotation direction; 
selected sensors are shown in schematic head plots on the right using the same color code). Shaded regions show ± 1 standard error of the mean across the selected 
sensors. Highest variance explained is observed for the initial pRF position (0° rotation) for S1 for all 3 sensor selections and for S9 at the initial pRF position for top 
5 sensors and near the initial position (between 0 and 45°) for top 10 and top 15 sensors. (B) Variance explained by average-then-goodness-of-fit group result and 
68%-confidence interval (shaded region) obtained by bootstrapping 10,000 times the group average across 10 subjects for the sensor selection shown in schematic 
head plots on the left. Same color code is used as in panel A. A schematic of different rotation angles for an example pRF is shown below. On average, variance 
explained by the model fit decreases ∼15% when using pRF positions rotated away from the initial pRF position (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.). 
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nd slightly recovers when rotating 180° ( Fig. 5 A, top panel). In other
ubjects, such as S9, variance explained peaked at the estimated pRF
osition, but the fall off with rotation angle was less steep ( Fig. 5 A, bot-
om panel). For 3 out of 10 subjects (S1, S5, S6), variance explained
y the model had a clear peak at 0° (the initial pRF position) and for 3
ut 10 subjects (S4, S7, S9) variance explained peaked near 0° ( ± 45°)
Supplementary Fig. S3A). For the other 4 subjects, there was either a
eak at an unexpected rotation (S3, S8), an asymmetric shape (S2) or
 very small effect of pRF rotation (S10). On average, we observed the
ighest variance explained with 0° rotation, with a maximum drop of
15% when pRF positions were rotated around the fovea ( Fig. 5 B). 

Rotating pRFs away from their estimated positions also affected the
patial topography of the predicted responses. When pRF positions were
otated away from their initial position, the sensors with the high-
st variance explained were confined to a single posterior region. The
hange in topography indicates that sensors differ in their sensitivity to
RF position (Supplementary Fig. S4). 

Importantly, the shape of the variance explained curve as a function
f rotation angle does not depend on the exact number of sensors se-
ected, although the overall variance explained decreases with the num-
er of selected sensors. Averaging from only the top 5 sensors (purple
ine in Fig. 5 ) results in the largest variance explained, and averaging
rom the top 15 sensors results in the lowest variance explained (blue
11 
ine). This is expected because the more sensors that are included, the
ower the average variance explained will be. The similarity in pattern
s well as the difference in the mean as a function of the number of sen-
ors included is found for both individual subjects ( Fig. 5 A and Supple-
entary Fig. S3A) and the average-then-goodness-of-fit group summary

 Fig. 5 B). These analyses indicate that model sensitivity to pRF rotation
s robust. 

.3.2. Artificially changing pRF sizes affects model accuracy 

When artificially altering pRF sizes 5x smaller or 10x larger, variance
xplained by the model gradually decreases up to 5–15%. We observed
hat our forward model explained on average most variance when us-
ng sizes close to, but slightly larger than, the pRF size estimated with
MRI ( Fig. 6 ). Some subjects showed a peak at slightly larger sizes (sub-
ect S1; Fig. 6 A, top panel), whereas other subjects had a local peak
t slightly smaller pRF sizes (subject S9; Fig. 6 A, bottom panel). Over-
ll, for 6 out of 10 subjects (S1, S3, S4, S5, S7, and S9) we observed a
ocal peak in variance explained by the model at or near the initially
stimated pRF (see Supplementary Fig. S3B), most of them overlapping
ith those subjects showing a reliable effect of pRF position manipula-

ion (see Supplementary Fig. S3A). The other 4 subjects showed either a
ery small effect of scaling (S6), or the unexpected result of no effect for
cale factors up to 1x and a monotonic increase in variance explained
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Fig. 6. Systematic variation of pRF size decreases model accuracy. (A) Variance explained by the forward model as a function of scaled pRF sizes, i.e., larger or 
smaller than initial pRF size estimated with fMRI (black line at 1). Top and bottom panels represent subjects S1 and S9, respectively. PRF sizes are systematically 
scaled from 0.2x to 10x the initially estimated size. Similar to variations in pRF position, variance explained is averaged across the union of 5 (purple line), 10 (red 
line), or 15 sensors (blue line) with the highest variance explained from each of the 19 scaling conditions. Shaded regions show ± 1 standard error of the mean across 
the selected sensors. For S1, variance explained peaks at a pRF size that is close to, but slightly larger than initially estimated with fMRI for all 3 sensor selections. 
For S9, there is a local peak at a smaller size than initially estimated with fMRI using top 5 and 10 sensors, and then variance explained continues to increase at 
larger sizes. (B) Variance explained by average-then-goodness-of-fit group result for top 5, 10, and 15 sensor selection and 68%-confidence interval obtained by 
bootstrapping 10,000 times the group average across 10 subjects (shaded areas). Three schematic heads on the right show selected sensors for top 5, 10, 15 sensors 
using the same color scheme. Different scale factors for an example pRF are shown below the x -axis. On average, variance explained by the model fit decreases ∼15% 

when using pRF sizes that are 5x smaller or 10x larger than the initial pRF position (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.). 
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or scale factors larger than 1x (S2, S8, S10). We did not analyze scale
actors beyond 10x to see if variance explained peaked for even larger
RF sizes, as those scale factors would make many pRFs extend beyond
he stimulus field-of-view. When a pRF size becomes very large rela-
ive to the stimulus field-of-view, our experiment basically becomes an
on-off” paradigm with a full-field stimulus. These very large pRFs will
herefore still capture some variance in our experiment. Indeed, with
MRI pRF models, a simple “on-off” model ( i.e. , a non-spatially selective
odel which predicts a uniform response to a stimulus anywhere in the

isual field relative to a blank) explains substantial variance in brain
egions with very large pRFs (supplementary Fig. 11A in ( Benson et al.,
018 )). Hence, we expect that with scale factors beyond 10x the vari-
nce explained will decrease slightly but eventually plateau (and not
o back to zero percent variance explained). See Section 4.3 for further
iscussion of this observation. 

Across subjects, we observed a similar drop in variance explained as
 function pRF scale factor (around 15%), with a plateau between the
nitial pRF size and doubling the pRF size ( Fig. 6 B). This indicates that
EG responses are less sensitive to changes in pRF size compared to pRF

ositions, or similarly, our forward model’s ability to capture pRF size
hanges. Changing the pRF size caused subtle changes in the spatial
opography of the variance explained sensor map, but these changes
ere neither systematic nor large (Supplementary Fig. S5). 

The precise number of sensors used to summarize the model accuracy
5, 10, or 15) has little effect on the shape of the variance explained
12 
urves as a function of pRF scale factor ( Fig. 6 , purple vs red vs blue line).
owever, as with the rotation analyses, the overall variance explained
alues decrease when adding more sensors to the selection. We find
hese patterns both for individual subjects (Supplementary Fig. S3A) and
or the group average ( Fig. 6 B). This result is consistent with the pRF
osition variation results ( Fig. 5 ), showing that the results are robust to
he exact number of sensors selected. 

.3.3. Generalizability across methods of computing group average and 

electing sensors 

The group average results shown in Figs. 5 and 6 reflect model ac-
uracy for the sensor-wise averaged data. However, the sensors most
esponsive to the stimuli may differ across subjects. Therefore, we also
omputed group-average model accuracy by first summarizing the re-
ponse for each subject as a function of pRF rotation or scale, and then
veraging these response functions across subjects (goodness-of-fit-then-
verage). This method uses the best sensors for each subject, either as
efined previously (highest variance explained) or defined in a model-
ndependent manner (highest split-half reliability of the 10 Hz SSVEF),
nd therefore respects individual differences in sensor topography. For
ndividual subject data using the split-half reliability method for sensor
election, see Supplementary Fig. S6. 

The results from these analyses are similar to those we observed
reviously from the average-then-goodness-of-fit results. For pRF po-
ition variations, the variance explained curves peak at 0°, declining
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Fig. 7. Group average effect of fitting individ- 
ual data first, before averaging across subjects, 
using a model-based and data-based sensor se- 
lection. (A) Effect of systematically varying pRF 
position. Group average is computed by taking 
each subject’s variance explained curve and av- 
eraging across subjects at each rotation angle 
or scale factor. Data were bootstrapped across 
subjects (10,000 times), where lines represent 
the average across bootstraps and shaded ar- 
eas 68%-confidence intervals. Red colors rep- 
resent results using a model-based sensor se- 
lection (for each subject, the union of top 10 
sensors across all pRF position variations). Pur- 
ple colors show results using a data-based sen- 
sor selection (for each subject, the 10 sensors 
with the highest SSVEF split-half reliability). In- 
dividual subject data and schematic head plots 
are shown in Supplementary Fig. S6. (B) Effect 
of systematically varying pRF size. Same color 
code as in panel A, but now for bootstrapped 

goodness-of-fit-then-average group result when systematically scaling pRF sizes (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.). 
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ystematically when rotating away from the initial estimated pRF po-
ition ( Fig. 7 A). For systematic variations in pRF size, the variance ex-
lained curves show a rise from reduced pRF sizes (0.2x) to the ini-
ially estimated pRF size (1x) ( Fig. 7 B). The curves differ slightly from
he goodness-of-fit-then-average results at higher scaling values, either
lateauing or very slightly declining. These results further support the
nding that the model accuracy is sensitive to pRF size and position
arameters. 

While the shape of these functions is similar to those in Figs. 5 and 6 ,
he overall height ( i.e. , mean variance explained values) is lower. This is
ecause the average-then-goodness-of-fit method reduces uncorrelated
oise in the measurements, allowing for a higher variance explained
y our model if its underlying assumptions are correct. In contrast, the
oodness-of-fit-then-average method by definition preserves the average
ariance explained. 

. Discussion 

Population receptive field modeling is an important tool that has
ade significant contributions to our understanding of the functional

rchitecture and underlying computations of the human visual cortex.
he successes of pRF models have been widespread and large in fMRI,
ith a few applications in intracranial data, and little applications for
EG forward models. Here, we developed a stimulus-to-sensor forward
odel that combines pRFs estimated from fMRI with a biophysical for-
ard model to predict the steady-state visually evoked MEG responses
hen subjects viewed moving bar stimuli. Our results demonstrate that
e can reliably measure and predict visually-evoked responses for these

timuli. The model was sensitive to cortical pRF model parameters, as
e found a decrease in variance explained when artificially changing

he underlying pRF model parameters estimated with fMRI. 
This combination of fMRI and MEG measurements allows future

tudies to investigate the time-resolved spatiotemporal dynamics of hu-
an visual field maps as well as the relationship between the fMRI
OLD response and electromagnetic field measurements. In principle,
ur forward model can be implemented without solving pRF mod-
ls using fMRI data. This can be done by applying a retinotopic tem-
late to an anatomical MR image, for example ( Benson et al., 2012 ;
enson et al., 2014 ; Benson and Winawer, 2018 ), or by predicting
etinotopic structure from the cortical curvature pattern via machine
earning algorithms ( e.g., deep neural networks ( Agrawal et al., 2014 ;
haligh-Razavi and Kriegeskorte, 2014 ; Güçlü and van Gerven, 2015 ,
017 ; Eickenberg et al., 2017 ; Ribeiro et al., 2020 )). Such applications
13 
ould simplify and shorten the solution to the model parameters and
educe MRI scanning time which is useful when studying special popu-
ations like children or patients or individuals having difficulty holding
xation. 

As a proof of principle, we implemented a forward model that
ses group average pRF parameter maps from an aggregate retino-
opy dataset ( Himmelberg, Kurzawski, et al. 2021 ) and compared its
odel performance to our standard forward model using subject spe-

ific retinotopy data. These average pRF maps were collected with stim-
li of approximately the same field-of-view but differing in pattern. The
verall model accuracy was similar to that obtained from using pRFs
easured in individual subjects (Supplementary Fig. S7A). Moreover,

he specific variance explained topographic sensor maps were broadly
imilar for the two methods (a correlation of about 0.6 between sensor
aps from the same participant across the two methods, compared to

bout 0.2 for different participants; Supplementary Fig. S7B). This result
hows that average pRF parameter maps from an aggregate retinotopy
ataset can be used to make reasonable forward model predictions. 

In contrast, it may be more problematic to use an average anatomi-
al template and head model to build cortical predictions with our for-
ard model, rather than using the subject’s measured head anatomy and
ead position. This is because the cortical folding geometry of an aver-
ge anatomical template is not realistic; it emphasizes large sulci and
yri and removes idiosyncratic folding patterns of individual subjects.
oreover there are large differences in the shape and size of visual ar-

as, differing by as much as 3:1 across people ( Dougherty et al., 2003 ;
enson et al., 2021 ). These differences are likely why we found higher
airwise correlations comparing variance explained sensor maps of the
wo forward models within subjects compared to across subjects (Sup-
lementary Fig. S7B). 

.1. Relationship to reconstructing cortical retinotopy from MEG sensor 

esponses 

Several MEG studies have aimed at reconstructing retinotopy re-
ponses on the cortical surface from MEG sensor measurements ( e.g.

 Moradi et al., 2003 ; Poghosyan and Ioannides, 2007 ; Sharon et al.,
007 ; Brookes et al., 2010 ; Perry et al., 2011 ; Cicmil et al., 2014 ;
asiotis et al., 2017 )). In those studies, instead of a forward model from

timulus to sensors, the cortical sources are estimated by inverse mod-
ling: going from sensors to cortical sources, that is, estimated sources
re derived by multiplying the sensor responses by the pseudo-inverse
f the gain matrix in the head model. These estimated source responses
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re then compared to visual field maps measured with fMRI, where the
MRI maps are assumed to be the ‘ground truth’, aiming to minimize
ocalization error. 

This inverse modeling approach can localize the retinotopic re-
ponses within a centimeter on the cortex of the correct hemifield,
ut it is limited to early visual areas and fails to accurately capture
nown features of visual field maps. For example, stimuli in the up-
er visual field ( i.e., the lower bank of the calcarine sulcus) cannot be
aptured due to low SNR or signal cancelation in MEG sensors ( e.g., see
 Nasiotis et al., 2017 )). Additionally, changes in stimulus polar angle
nd eccentricity —a hallmark of visual field maps —can only be distin-
uished at a coarse scale ( i.e., visual quadrants or fovea versus periphery)
 Moradi et al., 2003 ; Brookes et al., 2010 ; Perry et al., 2011 ; Cicmil et al.,
014 ). One reason for these limitations is that the inverse problem is ill-
osed: a measured magnetic flux from a single sensor can result from an
nfinite number of cortical source combinations. The solution to this in-
erse problem is ill-defined and can only be achieved by making assump-
ions to limit the possible solutions ( Cicmil et al., 2014 ). Several research
roups have used the known location of visual field maps as a prior
o constrain the number of possible solutions, also known as ‘Retino-
opy Constrained Source Estimation’ ( Hagler et al., 2009 ; Ales et al.,
010 ; Hagler and Dale, 2013 ; Hagler, 2014 ; Cottereau et al., 2015 ;
nverso et al., 2016 ). These constraints resolved some of these recon-
truction errors ( e.g., cross-talk between sources in visual areas with
lose proximity, see ( Hagler et al., 2009 ; Cottereau et al., 2011 , 2015 )),
ut the overall approach of source reconstruction still relies on regular-
zers coming with certain assumptions. 

Our forward model takes a different approach from previous MEG
tudies: we turn inverse modeling on its head. With our approach, model
redictions are not limited to early visual areas, but only by the extent
f reliably estimating local pRFs on the cortex. Also, our approach is not
onstrained by cancelation effects of opposite facing dipoles. On the con-
rary, our approach can be used to investigate the effect of source can-
elation on sensor responses by simulating different temporal patterns
n visual cortex ( Kupers et al., 2020 ). We first predict neural time series
t a millimeter-scale on the cortical surface using local pRF models esti-
ated with fMRI, before predicting sensor responses with the MEG for-
ard model. Because we use a purely forward modeling approach, our
odel is well-defined and avoids the need for additional constraints. By

ntroducing an intermediate step, i.e ., modeling responses on the cortical
urface, between the stimulus and the MEG sensor responses, our model
as the ability to implement a quantitative description of the stimulus
epresentation at the cortical source level; information one usually does
ot have access to and aims to reconstruct. Because our model is in-
ormed by local pRFs, it can create predictions at the millimeter scale,
ence incorporating stimulus-selectivity at a local scale, and thereby
ake meaningful and accurate predictions at the MEG sensor level. 

In addition, having a computational encoding model that predicts
ensor responses at an individual subject level introduces an alternative
ay of summarizing group data. Instead of computing sensor-wise aver-
ge of the summary statistic (for example, variance explained), it is pos-
ible to average individual data and individual predictions separately
nd compare the average group prediction to the average group data
 “average-then-goodness-of-fit ”). Typically, MEG or EEG sensor data av-
raged across subjects can be difficult to interpret. Because of individual
ifferences in cortical geometry and head position, a particular sensor
ill pool over different brain sources from each subject. For this rea-

on, the sensor-wise averaged data are not easily linked in a meaningful
ay to cortical sources or to the experimental paradigm. In our case,
owever, the forward model for each subject respects the variation in
RF parameters across that subject’s cortex, as well the subject’s cor-
ical folding pattern and head position in the MEG helmet. Hence the
veraged model predictions, though summarized in the sensor space,
eflect details of each of the individual subjects, and provides a com-
act summary of the result. Unlike averaging over, say, repeated trials
ithin an individual, averaging over subjects entails some degree of un-
14 
orrelated signal (due to the differences in subject cortical geometry)
n addition to uncorrelated noise. Hence the SNR is not expected to in-
rease in a simple way as the number of subjects increases. Even so, the
NR is higher for the average-then-goodness-of-fit method than for any
ndividual subject. 

Nonetheless, the average-then-goodness-of-fit method summary has
ome interpretation limits. For example, it may result in a smoother to-
ographic map than is found for any individual and will tend to show
ore accurate predictions in locations where the topographic maps are

etter aligned across subjects. For these reasons, we confirmed our re-
ults with the goodness-of-fit-then-average method, which shows lower
ariance explained, but respects differences between subjects in terms
f which sensors show the best model fits. 

.2. The relationship between MEG and fMRI measurements 

MEG and fMRI are two of the most widely used non-invasive mea-
urement techniques in human neuroscience capturing different types
f aggregated responses across neural populations. MEG captures the
agnetic flux from local field potentials, whereas fMRI captures the
eurovascular response. The neural signals giving rise to each measure-
ent are likely to differ. For example, the MEG signal is most sensitive

o pyramidal neurons whose dendrites are perpendicular to the cortical
urface ( Hämäläinen et al., 1993 ), which may differ from sensitivity of
he fMRI BOLD signal. Moreover, the neural signals giving rise to the
MRI signal have been shown to be most similar to those giving rise
o the broadband component of the field potential, not the evoked sig-
al which we used here ( Foucher et al., 2003 ; Winawer et al., 2013 ;
ermes et al., 2017 ). These factors will put an upper limit on how well
ur model can perform. Nonetheless, differences in tuning of the neural
opulations giving rise to different signals are likely to be modest in the
omain of position tuning, considering that position tuning is mapped
t a relatively large scale in cortex (millimeter), compared to other fea-
ures such as orientation, eye of origin preference, or spatial frequency
reference, which may vary at a finer spatial scale. 

.3. Sensitivity differences in predicting pRF position and size for fMRI vs 
EG 

We showed that when artificially rotating pRF positions on the cor-
ical surface, the model explained most variance in the data for the pRF
ositions obtained by fMRI. This indicates that the optimal pRF posi-
ion explaining fMRI BOLD data also predicts the steady-state responses
est in MEG sensors. On the other hand, artificially scaling pRF sizes
id not cause our model performance to peak at the estimated pRF size.
or several subjects, we observed a local peak in variance explained for
odels using pRF sizes slightly larger, while others for slightly smaller,

han those estimated from fMRI. 
Given that we observed 10 Hz steady-state amplitudes with high

eliability and signal-to-noise ratio in posterior MEG sensors, it is un-
ikely that the differences between data and model predictions are solely
aused by measurement noise. In addition, our model is fairly conserva-
ive and unlikely to overfit MEG data as it contains relatively few free
arameters (one gain factor and one reference phase per MEG sensor)
hich undergo a cross-validation procedure. 

In terms of modeling, the pRF size discrepancy can arise if the initial
MRI estimates overpredict pRF size, our MEG forward model underpre-
icts pRF size, vice versa , or a combination of both. Several neural and
on-neural factors have been reported to bias estimated pRF sizes with
MRI, whereas pRF position estimates appear to be more robust. 

Non-neural factors. One non-neural factor that has a large effect on
he estimated pRF size (and less so for pRF position) is the mismatch
etween the assumed and actual underlying hemodynamic response
unction (HRF). This mismatch can cause both over- and underestima-
ion of pRF sizes, depending on the experimental design or whether
he spatial or temporal component of the assumed HRF is inaccurate
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 Dumoulin and Wandell, 2008 ; Lerma-Usabiaga et al., 2020 ). Since our
MRI session used stimuli that swept across the visual field in both direc-
ions for a given orientation, we believe that our experimental design
inimized any bias in the estimated pRF size caused by the sluggish
RF. We did not estimate HRF functions separately for individual sub-

ects or visual areas. We also did not model the spatial component of
he HRF. However, our presentation time of sweeping bars was rela-
ively long (31 s/bar sweep), which largely reduces the impact of pRF
ize biases caused by the HRF mismatch ( Lerma-Usabiaga et al., 2020 ).

Another possible non-neural factor that has been reported to bias
RF sizes are eye movements. As shown by simulation ( Levin et al.,
010 ; Klein et al., 2014 ) and empirically ( Hummer et al., 2016 ), gaze
nstability can introduce overestimation of pRF sizes across eccentric-
ty. It also increases the absolute mean error for pRF position, but with
o systematic bias within polar angle or eccentricity maps compared
o gaze-corrected fMRI data. In the present study, eye movements were
onitored during fMRI and MEG experiments for most subjects and did
ot show large eye movements. However, we cannot rule out the pres-
nce of small fixational eye movements ( i.e., microsaccades and drift)
n both MRI and MEG sessions. At least, if microsaccades were present
n the MEG data they would not cause an electromagnetic field re-
ponse that overlaps with the 10 Hz steady-state response, as microsac-
ades are reported as increased gamma-band power ( > 60 Hz) ( Yuval-
reenberg et al., 2008 ). 

Neural factors. A neural factor that could affect pRF properties is
isuo-spatial attention. FMRI and MEG sessions contained the same
timuli and similar experimental design where subjects were performing
 fixation task. However, we cannot rule out fluctuations in covert spa-
ial attention shifts towards the moving bar stimulus (either voluntary
r involuntary). Several fMRI studies that explicitly manipulated vol-
ntary visuo-spatial attention reported changes for pRF positions, and
o changes or much less so for pRF sizes ( Klein et al., 2014 ; Kay et al.,
015 ; Vo et al., 2017 ; van Es et al., 2018 ). While individual subjects
ould employ different amounts of visuo-spatial attention in one session
ompared to the other, on average our initial estimates of pRF position
eem more robust compared to pRF size. This suggests that visuo-spatial
ttention is unlikely the main factor causing a difference in optimal pRF
ize for MEG versus fMRI. 

.4. Choice of MEG data component 

In this study, we compared the phase-referenced steady-state am-
litudes against the predicted retinotopy response. We chose SSVEFs
ecause this signal contains stimulus-specific information ( i.e., the
ontrast-reversal rate) and has a high signal-to-noise ratio. However,
e do not exclude the possibility that other MEG data components are
 better proxy for the predicted retinotopy responses in MEG sensors. 

Our model predictions are based on local pRFs estimated from fMRI
OLD responses, but the measured SSVEFs originate from high co-
erence between neural sources —a signal type fMRI is less sensitive
ompared to electric field measurements like ECoG ( Foucher et al.,
003 ; Hermes et al., 2017 ). For example, the ECoG study by
inawer et al. (2013) used a similar experimental design as the current

tudy: presenting high contrast-reversing checkerboard bars traversing
cross the visual field while recording local field potentials from early
isual cortex. They found that when a bar crossed the estimated pRF
f the ECoG electrode, there was an increase in steady-state amplitude
t the stimulus frequency and a broad increase in power across many
requencies, i.e., a parallel shift of the 1/f spectrum compared to base-
ine ( “broadband response ”). When comparing both data components to
OLD responses of pRFs at the same cortical location in healthy con-
rols, the broadband response was a better predictor of spatial sum-
ation compared to the steady-state response. This difference becomes

lear when using test stimuli that vary in bar width or size. In this case,
oth the fMRI and the broadband signal show sub-additive summation,
hereas the evoked response does not. Had we used stimuli with mul-
15 
iple bar widths and sizes in our MEG experiment, model accuracy for
he SSVEF would likely have been lower. 

.5. Choice of model parameters 

Currently, our model predicts responses from stimulus to cortex
ithout free parameters (after the pRF models are solved for fMRI) and
ts two free parameters per MEG sensor (a reference phase and gain fac-
or). Using a limited number of free parameters makes our model pre-
ictions interpretable: the reference phase allows for a sign reversal of
he MEG prediction and potential delays in visual processing across the
isual hierarchy, and the gain factor puts the model predictions in units
f femto-Tesla. Allowing additional free parameters (such as an offset or
cale factor for pRF estimates on the cortex) or refitting our gain factor
o the average of all MEG data runs is likely to improve model perfor-
ance but can also cause overfitting or reduce its interpretability. 

Additionally, other encoding models predicting visual preferences
f neural populations could capture more complex dynamics compared
o the current model. Examples of such models are the difference of
aussians (DoG) pRF model ( Zuiderbaan et al., 2012 ) or the compres-

ive spatial summation (CSS) model ( Kay et al., 2013 ). Since our model
mplements the step from stimulus to predicted cortical responses in a
eparate function, the model component can be interchangeable and al-
ows the general modeling approach to adapt to different experiments. 

.6. Individual differences 

We observed that the amount of variance explained by our model
as considerably different across subjects, using both the originally esti-
ated pRFs with fMRI and when artificially varying pRF size or position.
his inter-subject variability could be the result of methodological er-
ors, measurement noise, non-neural physiological noise (such as head
nd eye movements), or a true difference between subjects. Method-
logical errors include the possibility of improper alignment of the MEG
ensor positions to subject anatomy, and the type and resolution of the
ead model. 

MEG and EEG head models have become increasingly more complex
for an overview, see Vorwerk et al., 2014 ). For example, we used the
verlapping spheres method ( Huang et al., 1999 ), but there are more
iologically accurate models like the boundary element method (‘BEM’,
ybic et al., 2005 ; Gramfort et al., 2010 ). With the head model we used,
e explained up to about 60% of variance in the sensor data. This is rel-
tively close to the about 80% split-half reliability of the 10 Hz steady-
tate response, a proxy for the noise ceiling. Nonetheless there remains
nexplained variance, indicating that there is some room for higher ac-
uracy from better methods. The current approach provides a clear proof
f principle that a forward model from stimulus to sensors can accurately
redict responses to visual stimuli. 

.7. Future applications and extensions 

Our forward model shows that MEG responses can be reliably pre-
icted from stimulus to cortex to sensors. One interesting potential appli-
ation to use our model is to characterize the changes in pRF properties
ver time. As mentioned previously, several fMRI studies have observed
hanges pRF center of mass with visuospatial attention ( Klein et al.,
014 ; Kay et al., 2015 ; Vo et al., 2017 ; van Es et al., 2018 ). Our MEG
orward model could be used to predict these changes and capture
he time-resolved effects of visuo-spatial attention. A second applica-
ion of our model would be the combination of spatial pRF models
stimated with models that capture pRF preferences in temporal pro-
essing ( Stigliani et al., 2017 ; Zhou et al., 2018 ) or replace the local
RF models on the cortex with topological maps coding for other types
f perception (such as audition ( Saenz and Langers, 2014 )), cognition
such as numerosity ( Harvey et al., 2013 )) or action ( Mattay and Wein-
erger, 1999 ). 
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Future studies can extend our forward modeling approach and ap-
ly it to study a variety of questions aiming at spatiotemporal dynamics
f visual processing. For example, one consideration is changing the ex-
erimental design of the MEG session. In the current study, MEG stimuli
ere designed such that they were similar to the retinotopic stimuli used

or fMRI studies. However, because fMRI experiments sample BOLD re-
ponses at second time resolution and need to take into account the
luggish hemodynamic response, it does not mean that MEG measure-
ents need to be sampled at the same time resolution with the same

emporally predictable stimulus sequence. Since our model predicts the
EG responses to arbitrary stimulus apertures in the visual field based

n the cortical spatial tuning preferences, it can predict other temporal
equences and give insight to a variety of spatiotemporal dynamics at
ub-second temporal resolution. 

. Conclusion 

Neuroscientists use a number of techniques to measure neural ac-
ivity, each providing different information about brain activity. MEG
easures the magnetic field induced by electric currents present in neu-

al activity, whereas fMRI measures the metabolic demands associated
ith neural activity. In this paper, we demonstrate a forward model

hat can capture MEG sensor responses to retinotopic mapping stimuli,
y combining pRFs estimated from fMRI responses with the biophysical
EG head model. Our results support a common underlying mechanism

f neural processing measured with the two modalities, and provide new
pportunities to study time-resolved spatiotemporal dynamics in visual
rocessing. 
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