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1. INTRODUCTION

How the visual system integrates visual information that 

reaches our retina is quite remarkable. Each individual 

neuron in the visual cortex responds to only a confined 

part of the visual field, its so- called receptive field ( Hubel 

 &  Wiesel,  1959). Through communication and recurrent 
processing across neurons along the visual hierarchy, a 
coherent image is formed and we can see the world 
around us in a sensible manner ( Angelucci  &  Bressloff, 
 2006;  V.  A.  F.  Lamme  &  Roelfsema,  2000). Information 
processing happens exceptionally fast. Within tens of 
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milliseconds, visual information reaches the primary 
visual cortex and other visual areas ( Bullier,  2001). Infor-
mation is then propagated along the hierarchy of visual 
regions and relayed through horizontal and feedback 
connections within and across regions ( V.  Lamme,  1995).

Much of the visual system is organized into visual field 
maps ( Wandell  et al.,  2007). The visual field map proper-
ties of individual neurons can be studied invasively using 
electrophysiological tools ( Hubel  &  Wiesel,  1959). To 
measure receptive field in the human brain, however, we 
generally rely on non- invasive methods, such as func-
tional resonance imaging (fMRI), which measures popu-
lations of neurons inside a voxel (i.e., 3D pixel containing 
the signal from a patch of cortex). We can measure the 
aggregate receptive field properties of these populations 
of neurons using population receptive field (pRF) model-
ing ( Dumoulin  &  Knapen,  2018;  Dumoulin  &  Wandell, 
 2008;  Wandell  &  Winawer,  2015), which estimates the 
region of visual space that a voxel responds to.

The visual system is fast and dynamic, however, and 
standard fMRI protocols are slow in comparison, in the 
range of seconds. This is due to the slow nature of the 
hemodynamic response that constitutes the blood- 
oxygen- level- depended (BOLD) response measured with 
fMRI ( Logothetis  &  Wandell,  2004). Other non- invasive 
techniques, such as magnetoencephalography (MEG), 
provide temporal resolution in the order of milliseconds, 
but generally lack the spatial resolution to study the 
detailed layout of the pRFs ( Hämäläinen  et al.,  1993). Pre-
vious studies have tried to solve the lack of spatial resolu-
tion by means of source reconstruction ( Brookes  et  al., 
 2010;  Cicmil  et  al.,  2014;  Moradi  et  al.,  2003;  Nasiotis 
 et al.,  2017;  Perry  et al.,  2011), that is, estimating the neu-
ronal sources (i.e., the pRFs) underlying the MEG sensor 
signals through inverse modeling. However, inverse mod-
eling in MEG is a non- unique problem, as there is, without 
additional assumptions, an infinite number of source com-
binations that could lead to the same measured MEG sig-
nal. Moreover, spatial resolution is limited by field spread, 
also known as spatial leakage in source space ( Wens, 
 2023). This makes it difficult to estimate receptive field 
maps with fine detail and previous studies could only dis-
tinguish pRF properties on the scale of whole visual quad-
rants or distinguish fovea versus peripheral pRFs ( Brookes 
 et al.,  2010;  Cicmil  et al.,  2014;  Moradi  et al.,  2003;  Nasiotis 
 et al.,  2017;  Perry  et al.,  2011).

 Kupers  et  al.  (2021) introduced a forward modeling 
approach that avoids the inverse problem and instead 
uses the spatially- specific pRF properties obtained from 
fMRI measurements. By predicting the cortical responses 
and converting them to the MEG sensor level (instead of 
the other way around), they explained a large amount of 
variance in the MEG data. However, because Kupers and 

colleagues relied on stimulus- driven oscillations at 10 Hz, 
their approach does not readily provide access to MEG’s 
high time resolution.

Here, we extended the forward modeling approach to 
the temporal domain by adjusting the experimental 
design, analysis pipeline, and the type of recorded MEG 
signal. Specifically, we focused on event related fields 
(ERFs), that is, the brain’s response following a short 
stimulus event. Stimulus- driven changes in oscillations 
and ERFs are related measures of neural activity; how-
ever, they are not identical and differ in fundamental 
aspects ( Bae  &  Luck,  2019;  Schneider  &  Maguire,  2018; 
 Yeung  et al.,  2004). Most importantly, ERFs reveal how 
brain activity evolves over time.

We show that for ERFs, the fMRI- based pRFs explain 
up to 91% of the measured MEG signal. Furthermore, we 
provide evidence that we can investigate pRF character-
istics in detail by changing the pRF properties and quan-
tifying how this affects the explained- variance of the ERF 
responses. Importantly, we do this with millisecond reso-
lution, allowing us to further our understanding of both 
spatial and temporal characteristics of the visual system.

2. METHODS

2.1. Participants

Five subjects (one female; ages 20– 48 years, M = 29.8, 
SD  =  9.9) participated in this study. Statistical power 
does not only depend on the number of participants but 
also on the number of trials per participant ( Baker  et al., 
 2021). We aimed to get significant results in individual 
participants by using a large number of trials per partici-
pant. In other words, participants are replication units not 
measurement units. Thus, this consists of a focused 
study ( Gratton  et al.,  2022), with the aim to show signifi-
cant results in every single participant. In addition, to 
have clinical relevance we need to get significant results 
in single participants. Lastly, the number of participants is 
similar as in previous modeling research using MEG ( Ales 
 et  al.,  2010;  Brookes  et  al.,  2010;  Cicmil  et  al.,  2014; 
 Kupers  et al.,  2021;  Moradi  et al.,  2003;  Nasiotis  et al., 
 2017;  Perry  et  al.,  2011) and fMRI ( Aqil  et  al.,  2021; 
 Dumoulin  &  Wandell,  2008;  Kay  et al.,  2013;  Zuiderbaan 
 et al.,  2012).

All participants were screened for fMRI and MEG com-
patibility, had normal or corrected- to- normal visual acuity, 
and did not have a history of neurological or psychiatric 
disorders. The study was approved by the Scientific and 
Ethical Review Board (VCWE) of the Faculty of Behavior & 
Movement Sciences, Vrije Universiteit Amsterdam, and it 
was conducted in accordance with the ethical guidelines 
outlined in the Declaration of Helsinki (World Medical 
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Association, 2000). All participants gave their written 
informed consent prior to the study.

2.2. Stimuli

Stimuli were created using the Python PsychoPy pack-
age ( Peirce,  2007) and custom built Python code upon 
exptools2. Both fMRI and MEG stimuli were moving 
checkerboards presented inside apertures of different 
shapes on a gray mean- luminance background. The 
checkerboard inside the apertures consisted of multiple 
rows of squares. Each square had a width of 0.625deg of 
visual angle (deg). The rows of squares appeared to be 
moving either upwards or downwards, making a full cycle 
5 times per second. This motion direction of the squares 
was chosen randomly for each stimulus presentation. To 
ensure alertness and stable fixation during the entire 
experiment, a small fixation dot with a diameter of 0.1deg 
was displayed in the middle of the screen, changing col-
ors (red or green) in a semi- random interval with an aver-
age duration of 5.6  s. Participants were instructed to 
press a button whenever the color changed. The partici-
pants could decide to use the button with their left or 
right hand as the task and motion induced by the 
responses were unrelated to our experimental manipula-
tion. We did not assess task performance, since it was 
not relevant to our analysis.

2.2.1. Stimulus displays

2.2.1.1. fMRI. Participants viewed the stimuli on an MRI- 
compatible screen (Cambridge Research System 32” 
LCD widescreen) located outside the bore through front- 
silvered mirrors. The screen resolution was 1920 x 1080 
pixels with a 120 Hz refresh rate and height of 39.3 cm. 
The viewing distance was 210  cm yielding 10.68deg in 
diameter. Stimulus presentation was then limited to a cir-
cular area with the same diameter of 10.68deg.

2.2.1.2. MEG. MEG stimuli were back projected via two 
mirrors onto a transparent screen using an LCD projector 
(BarcoData 8200 LC, Barco Projection Systems, Kuurne, 
Belgium) with a resolution of 1024 x 768 pixels and 60 Hz 
refresh rate, height of 34  cm, and viewing distance of 
199 cm. The resulting circular window for stimulus pre-
sentation was 9.77deg in diameter.

2.2.2. Stimulus and sequence

2.2.2.1. fMRI. We used a standard contrast- defined bar- 
stimulus ( Dumoulin  &  Wandell,  2008). The stimulus aper-
tures for the fMRI session were bars with a width of 
1.25deg. A bar was presented in one of eight possible 

configurations: four possible orientations (0, 45, 90, and 
135deg) and two opposing step directions that were 
orthogonal to the bar orientation. The two opposing step 
directions were included to average out effects of step 
direction and avoid biasing the pRF estimates due to the 
lag of the hemodynamic response function (HRF). The 
bars swept across the 10.68deg circular area of the screen 
in 20 discrete steps. The presentation was time locked to 
each volume acquisition, so that each step was presented 
for 1.5 s. After every two bar passes, a mean- luminance 
screen was displayed for 15  s. Generally, six runs were 
acquired per participant. For participant 1, we had time to 
acquire eight runs within the scheduled scanning time. For 
participant 2, we acquired just four runs due to technical 
issues. Each run had a duration of about 6 min. The order 
of the eight bar configurations presentation was the same 
for each run. Together with preparation and structural 
scans, the fMRI session took about 1.5 h in total.

2.2.2.2. MEG. We used the same contrast- defined stim-
ulus, but the aperture was either a bar or a circle shape. 
The bars had a width of 1.25deg and were either vertically 
or horizontally oriented. They were presented at 0, 1.28, or 
3.06deg away from the center of the screen (vertical bars: 
left/right from center; horizontal bars: below/above cen-
ter). This yielded five possible locations per bar orientation. 
The circle shapes appeared in one of eight locations, that 
is, in one of the four quadrants with two possible eccen-
tricities (1.28 and 3.06deg). Circles at the small and large 
eccentricity had a diameter of 1.25 and 2.5deg, respec-
tively. The circle shapes were included to increase the spa-
tial specificity of the signal by only stimulating one quadrant 
of the visual field at a given time. The bar-  and circle- 
configurations yielded a total of 18 MEG stimuli, which 
were each presented 18 times per run.

In contrast to the fMRI sequence, the stimuli were pre-
sented in semi- randomized order, with the restriction that 
a given stimulus did not consecutively appear twice in 
the same visual quadrant. Furthermore, stimulus duration 
was short (100 ms) and followed by a mean- luminance 
screen (lasting 900 ms ± 250 ms) to evoke event- related 
field (ERF) responses.

The stimulus presentation protocol was interleaved 
with 2 s blink breaks about every 20 s to minimize blink 
artifacts in the MEG data. Blink breaks were indicated by 
a black square in the middle of the screen, and the par-
ticipant was instructed to try to blink only during this 
interval. The participant performed the same fixation dot 
color change task as during the fMRI session; however, 
color changes did not appear during stimulus presenta-
tion or blink breaks to leave them uninterrupted. The par-
ticipant could take breaks in between runs (while staying 
in the scanner). Per participant, ten runs were recorded 
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that each lasted about 6 min. For participant 1, nine runs 
were recorded due to time constraints, and for partici-
pant 2 fourteen runs could be collected in the scheduled 
scanning time. Including preparation, the scanning ses-
sion took about 2 h.

2.3. Data acquisition

2.3.1. fMRI

Structural and functional MRI data was acquired using a 
Philips Achieva 7T scanner with a 32- channel Nova Med-
ical head coil. For structural whole- brain images, T1- 
weighted (T1w) and T2- weighted scans were acquired 
with a resolution of 0.7  mm isotropic. Functional MRI 
data were acquired using a T2*- weighted 2D- EPI 
sequence with a resolution of 1.7 mm isotropic and 57 
slices and 225 volumes (FOV  =  216  x  216  mm2, TR  = 
1500 ms, TE = 2 ms, FA = 53deg, duration = 330 s). To 
avoid start- up magnetization transients, the first 9 s were 
automatically discarded (six dummy scans). Top- up 
scans with opposite phase- encoding direction were 
acquired after each scan to perform susceptibility distor-
tion correction ( Andersson  et al.,  2003).

2.3.2. MEG

MEG data were recorded in a magnetically shielded room 
using a 306- channel whole- head Triux Neo system 
(Elekta Neuromag Oy, Helsinki, Finland) of which 102 
sensors were magnetometers and 204 planar gradiome-
ters. The sampling rate was 1000  Hz and during the 
recording, the data were low- pass filtered at 330 Hz to 
avoid aliasing and high- pass filtered at 0.10 Hz. Internal 
active shielding (IAS;  Taulu  et al.,  2014), using MEGIN’s 
in- wall feedback- coils, was used. The gantry of the MEG 
was angled at 69deg, and the participants were sitting in 
an upright position. Five head localization coils were 
used to determine the head position relative to the MEG 
sensors throughout the recording session. The position 
of these coils and points outlining the scalp and nose 
was digitized using a 3D- digitizer (Fastrak, Polhemus, 
Colchester, VT, USA) before the recording. For post hoc 
removal of artifacts, the electrooculogram (EOG; with 
three electrodes, two placed laterally to both eyes and 
one above the left eyebrow) and electrocardiogram (ECG; 
one electrode) were recorded. During initial data prepro-
cessing, we compared ERF time courses with and with-
out excluding artifact- affected epochs and concluded 
that rejection of the affected epochs did not result in sig-
nificantly different ERF profiles. Therefore, we did not use 
EOG and ECG for artifact rejection. For precise epoching 
based on stimulus onsets, a photodiode was placed in 

the corner of the screen measuring the exact onset and 
offset of the stimuli.

2.4. Data preprocessing

2.4.1. fMRI

For structural MRI data, FreeSurfer (version 7.2.0) recon- all 
was used to obtain native cortical surface reconstructions 
(‘fsnative’ surfaces). Functional MRI data preprocessing 
was performed using the standard FMRIPREP pipeline 
(version 20.2.0;  Esteban  et al.,  2019), a Nipype- based tool 
( Gorgolewski  et al.,  2011). Each T1w (T1- weighted) volume 
was corrected for INU (intensity non- uniformity) using 
N4BiasFieldCorrection (version 2.1.0;  Tustison  et al.,  2010) 
and skull- stripped using antsBrainExtraction.sh (version 
2.1.0; using the OASIS template). Functional data was 
slice time corrected using 3dTshift from AFNI (version 
16.2.07;  Cox,  1996) and motion corrected using mcflirt 
(FSL version 5.0.9;  Jenkinson  et al.,  2002). Distortion cor-
rection was performed using an implementation of the 
TOPUP technique ( Andersson  et al.,  2003) using 3dQwarp 
(AFNI version 16.2.07;  Cox,  1996). This was followed by 
co- registration to the corresponding T1w using boundary- 
based registration ( Greve  &  Fischl,  2009) with 6deg of free-
dom, using flirt (FSL). Motion correcting transformations, 
field distortion correcting warp, BOLD- T1w transformation 
and T1w- to- template (MNI) warp were concatenated and 
applied in a single step using antsApplyTransforms (ANTs 
version 2.1.0) using Lanczos interpolation. Physiological 
noise regressors were extracted applying CompCor 
( Behzadi  et  al.,  2007). Principal components were esti-
mated for the two CompCor variants: temporal (tComp-
Cor) and anatomical (aCompCor). A mask to exclude 
signal with cortical origin was obtained by eroding the 
brain mask, ensuring it only contained subcortical struc-
tures. Six tCompCor components were then calculated 
including only the top 5% variable voxels within that sub-
cortical mask. For aCompCor, six components were cal-
culated within the intersection of the subcortical mask and 
the union of CSF and WM masks calculated in T1w space, 
after their projection to the native space of each functional 
run. Frame- wise displacement ( Power  et  al.,  2014) was 
calculated for each functional run using the implementa-
tion of Nipype. Many internal operations of FMRIPREP use 
Nilearn ( Abraham  et al.,  2014), principally within the BOLD- 
processing workflow. For more details of the pipeline see 
https://fmriprep . readthedocs . io / en / 20 . 2 . 0 / workflows 
. html. This description was generated by FMRIPREP 
intended to be copied verbatim (released under the CC0 
license), to enhance reproducibility of studies. We con-
verted the preprocessed functional time series (resampled 
in fsnative surface space) to percent signal change, which 

https://fmriprep.readthedocs.io/en/20.2.0/workflows.html
https://fmriprep.readthedocs.io/en/20.2.0/workflows.html
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was a matrix of shape vertices x time for each run. The 
number of vertices across participants ranged from 
275064 to 617224, with a mean of 370937.

2.4.2. MEG

To remove environmental artifacts and because IAS was 
used ( Taulu  et al.,  2014), the raw MEG data werefirst pre-
processed with the temporal extension of Signal Space 
Separation (tSSS;  Taulu  &  Simola,  2006) implemented in 
the MaxFilter software (Elekta Neuromag, Oy, version 
2.2.15). Malfunctioning or noisy channels during the 
entire session were interpolated by tSSS (an average of 
5.5 out of 306 channels were interpolated). The data files 
were then read with MNE ( Gramfort  et al.,  2013;  Larson 
 et al.,  2022) and subsequently further preprocessed using 
a custom- written Python code. The photodiode recorded 
alongside the MEG data was used to identify onsets of 
stimuli, and periods containing missed screen flips were 
discarded. The data were then epoched with a time win-
dow of - 100 to 600 ms from stimulus onset. The proce-
dure left on average 186.2 epochs per stimulus. Every 
epoch was then baseline corrected, subtracting the mean 
amplitude during the baseline period (- 100 to 0 ms from 
stimulus onset) from the entire epoch. No other prepro-
cessing or filtering steps were applied.

2.4.3. Gain matrix

The gain matrix, otherwise also referred to as the lead 
field matrix, describes how each cortical source (pRF 
that we measured with fMRI) contributes to the signal 
measured at each MEG sensor, given the anatomy of 
the participant and the location of their head with 
respect to the sensors. In other words, the folding influ-
ences the MEG signals ( Ales  et al.,  2010;  Hillebrand  & 
 Barnes,  2002). We used Brainstorm ( Tadel  et al.,  2011) 
to co- register the MEG data to the participant’s MRI 
anatomy and then compute the gain matrix. For first 
gross alignment of the MEG data to the anatomy, we 
defined the participant’s fiducials on the participant’s 
T1w image. Brainstorm then refined the registration 
using the digitized head points and the scalp surface 
extracted from the T1w image. Some manual adjust-
ments were made when necessary. Once aligned, we 
used the Overlapping Spheres algorithm ( Huang  et al., 
 1999) implemented in the Brainstorm toolbox to gener-
ate the gain matrix, for which for each sensor separately 
a local sphere is fitted to the participant’s skull- shape 
below the sensor. The FreeSurfer- generated pial surface 
for each participant was used as source- space, and an 
equivalent current dipole was placed at each vertex. We 
constrained the orientation of the dipoles to be perpen-

dicular to the surface. The resulting gain matrix was of 
shape sensors x vertices.

2.5. Analysis pipeline

We used a forward modeling approach to estimate pRFs 
with high spatial and temporal resolution. To outline 
briefly, we measured fMRI and MEG in separate sessions 
while showing contrast- defined stimuli to five partici-
pants. With the measured fMRI response, we estimated 
the participants’ pRFs on their cortical surface (Fig.  3). 
These pRFs were used to predict their cortical responses 
to the MEG stimuli. The predicted responses were then 
converted to sensor space by applying a gain matrix, 
which describes how each cortical location contributes 
to the signal measured with the MEG sensors. We then 
compared the predicted sensor responses to the mea-
sured sensor responses at each timepoint recorded 
around stimulus presentation. With this approach, we 
were able to investigate with millisecond resolution how 
well the pRFs describe the MEG signal. Below, we explain 
the individual steps in more detail.

2.5.1. Estimate pRF properties with fMRI

We measured fMRI while participants viewed contrast- 
defined bar stimuli that traversed across the screen. Based 
on measured fMRI response, we estimated the partici-
pant’s pRFs as described in  Dumoulin  and  Wandell  (2008). 
This was done for each location on their cortical surface 
(referred to as ‘vertex’). In short, we extrapolated the mea-
sured fMRI response of each voxel to the vertices on the 
participant’s cortical surface. In a two- stage coarse- to- fine 
search, we then constructed a range of 2D Gaussian mod-
els with different visual field locations and sizes and pre-
dicted their responses to the stimuli presented during the 
fMRI session. This was done by multiplying the 2D Gauss-
ian model with the stimuli and convolving the resulting 
time course with a hemodynamic response function (HRF). 
The HRF was modeled as two gamma basis functions 
( Glover,  1999) with its coefficients set to 1, 1, and 0 for the 
canonical HRF, its derivative and dispersion, respectively 
( Pedregosa  et  al.,  2015). Each predicted response was 
then compared to each vertex’ measured response. The 
pRF (i.e., 2D Gaussian) that best predicted the response 
was then used as a seed to fine- tune the preferred pRF 
position and size that fitted the vertex’ fMRI response the 
best. For each cortical location, we now had an estimate of 
the part of the visual field that each vertex responds to the 
most, that is, its preferred population receptive field.

For the remainder of the analysis, we only considered 
vertices that were responsive to visual stimuli and could be 
reliably estimated (Fig.  3). In other words, a vertex was 
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included if (i) the vertex was not located under a vein, (ii) the 
pRF explained at least 15% of the measured fMRI response, 
and (iii) the pRFs’ position in visual space was inside the 
circular aperture in which the stimuli were presented.

2.5.2. Measure ERF sensor responses with MEG

In a separate session, we measured MEG with 306 sen-
sors while showing 18 bar and circle stimuli at different 
visual field locations. In contrast to the fMRI experiment, 
the stimuli were presented for a shorter duration (100 ms) 
and in semi- random order; however, the checkerboard 
pattern within the circle and bar stimuli was kept the same 
as in the fMRI experiment with the aim to elicit strong 
responses in equivalent neuronal populations as in the 
fMRI experiment. Each stimulus duration was followed by 
a blank period of about 900  ms (with a jittered onset 
of ±  250  ms) to allow for the neuronal responses to go 
back to baseline. We calculated the event- related field 
(ERF) responses to the 18 stimuli by averaging the epochs 
from - 100 to 600 ms after stimulus presentation for each 
stimulus type separately and for each sensor inde-
pendently. For visualization of the ERFs in Figure 4B, we 
averaged over all epochs of a given stimulus. However, for 
cross- validation in our analysis, we calculated the ERF 
averages over a random selection of half of the epochs per 
stimulus for a given cross- validation ‘fold’, resulting in a 
‘training’ and ‘test’ ERF data set. We did this 120 times, 
resulting in 120 ‘training’ and ‘test’ ERF data sets.

2.5.3. Predict cortical responses from pRFs

Next, for each pRF on the participant’s cortical surface, we 
predicted their responses to the same 18 MEG stimuli. The 
predicted value for each stimulus is the overlap between 
the 2D pRF model and the 2D binarized stimulus, both liv-
ing in visual space. We calculated the overlap as the matrix 
multiplication of the vertices’ pRFs and each of the stimuli, 
resulting in a matrix of shape vertices x stimuli. Each vertex 
has thus one predicted value per stimulus, which is zero if 
there is no overlap, low if the overlap is small, and high if 
the overlap of stimulus and pRF is large.

2.5.4. Predict ERF sensor responses

The ERF signal measured with MEG resides at the sensor 
level, whereas the pRF predictions originate from the par-
ticipant’s cortical surface. To be able to test how much 
the pRF models explain the ERF signal, we first needed 
to convert the pRF predictions to the sensor level using 
the gain matrix. The gain matrix contains the weights 
explaining how activity at each vertex on the cortical sur-
face translates to a magnetic signal in each sensor. We 

obtained the predicted sensor responses by matrix mul-
tiplication of the gain matrix (sensors x vertices) with the 
pRF predictions (vertices x stimuli), resulting in a matrix of 
size sensors x stimuli containing each MEG sensor’s pre-
diction to the 18 stimuli.

2.5.5. Compare measured and predicted  
sensor responses

We then tested how well the pRF models explained the 
measured ERF responses at each latency. For that, we 
fitted each sensor’s predicted responses to the mea-
sured ERF responses at each timepoint between - 100 
and 600  ms after stimulus onset in a cross- validated 
manner (i.e., for the 120 sets of randomly split training 
and test ERF halves that we call cross- validation ‘folds’).

The following provides a more detailed explanation. 
For a given cross- validation fold, latency, and sensor,  
we obtained two beta weights, b1 (scaling factor) and  
b0 (offset), by linearly regressing the pRF predictions of  
a given sensor, p sensor( ), on an ERF training set, 
trainingY fold, latency,sensor( ). Since we baseline cor-
rected the epochs, we kept the offset fixed at 0 and only 
used the scaling factor to scale the pRF predictions (Y!):

Y! fold, latency,sensor( ) = b1 fold, latency, sensor( )*
p sensor( )  

(1)

This brought the pRF predictions to the same units  
as the ERF responses (femto Tesla (fT) for magnetometers 
and fT/m for planar gradiometers). We now computed  
the goodness of fit of the scaled pRF predictions (Y!(fold,
latency,sensor )) on a test ERF data set (testY (fold,
latency,sensor )) using variance explained (VE):

 VE fold, latency,sensor( ) = 1−  RSS fold, latency,sensor( )
TSS fold, latency,sensor( )

⎛

⎝⎜
⎞

⎠⎟  
(2)

where the Residual Sum of Squares (RSS) and Total Sum 
of Squares (TSS) were defined as:

 

RSS fold, latency,sensor( )
= 
stimulus
∑ testYstimulus fold, latency,sensor( )(

− Y! stimulus fold, latency,sensor( ))2
 

(3)

and

 

TSS fold, latency,sensor( )
= 
stimulus
∑ testYstimulus fold, latency,sensor( )( )2

 
(4)



7

K. Eickhoff, A. Hillebrand, M.C. de Jong et al. Imaging Neuroscience, Volume 2, 2024

VE is thus a single value that encompassed how 
much the predicted pRF responses explained the mea-
sured ERF responses to the 18 stimuli at a particular 
timepoint, in a given sensor, and for a given fold. In the 
results section, we reported the median variance 
explained over the 120 folds, together with its 95% con-
fidence interval (CI).

To obtain sensor averages, we did not directly average 
over the sensors’ VE , since the sensors differ in their time 
to peak. Instead, we calculated the averageVE  for a given 
fold, timepoint, and group of sensors as:

 

averageVE fold, latency( )

= 1− sensor∑ RSSsensor fold, latency( )

sensor∑ TSSsensor fold, latency( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 

 

(5)

We again reported the median and CI over cross- 
validation folds. We used three different sensor groups to 
obtain the averages. For the first group, we calculated the 
average across all sensors that had reached a variance 
explained of 50% anywhere between - 100 and 600 ms of 
stimulus presentation (‘active sensors’). For the second 
group, we averaged over all sensors with variance 
explained higher than 50% in an early time window from 
50 to 150 ms after stimulus onset (‘early sensors’). And for 

the third group, we averaged over the 25% fastest sen-
sors, that is, the 76 sensors that reached 50% variance 
explained earliest after stimulus onset (‘earliest sensors’).

2.5.6. Shift pRF polar angles and re- fit

To test whether the recorded ERFs were optimally 
described by the pRF parameters as estimated by fMRI, 
we shifted the polar angles of each cortical pRF away 
from its original polar angle by a set of negative and pos-
itive angles (- 90, - 60, - 45, - 30, 0, 30, 45, 60, and 90deg) 
and repeated the analyses described in Sections 2.5.3 to 
2.5.5. We hereby obtained a new set of sensor predic-
tions based on the shifted pRFs and compared them 
again to the experimental ERF data. We expected that if 
the ERF responses are driven by the cortical pRFs, the 
variance explained should decrease as a result of shifting 
the pRFs away from their estimated parameters.

3. RESULTS

3.1. pRF models explain ERF responses across 
different stimuli

We presented 18 different stimuli to the participants 
(Figs. 1C and 4A) while measuring MEG to obtain ERF 
responses. Figure 4B (right panel) shows a participant’s 

Fig. 1. Experimental design. (A) For the fMRI session, we used a standard stimulus sequence to estimate the 
participant’s pRFs ( Dumoulin  &  Wandell,  2008). A contrast- defined bar swept across the screen in eight different directions 
interspersed with mean- luminance blocks. The step direction was orthogonal to the bar orientation. (B) During the 
MEG session, 18 contrast- defined circle or bar stimuli were presented for 100 ms and interspersed by mean- luminance 
breaks (900 ± 250 ms). (C) MEG stimulus configurations with example contrast- defined circle and bar stimuli. The figure 
illustrates the two possible eccentricities of the circle stimuli (1.28 and 3.06deg from screen center) in one of the four 
visual quadrants in which the circles could appear. For the bar stimuli, the figure shows the vertical bar at three out of five 
possible eccentricities (0, 1.28, and 3.06deg from screen center). The protocol also included five horizontal bars.
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Fig. 2. Analysis pipeline. Step 1) Estimate pRF properties: 
We measured fMRI responses while the participants 
viewed contrast- defined bar stimuli that traversed across 
the screen to obtain pRF estimates for each location on 
the participant’s cortical surface ( Dumoulin  &  Wandell, 
 2008). Step 2) Measure ERF responses: In a separate 
session, we measured ERF responses with MEG while the 
participants viewed contrast- defined bar or circle stimuli. 
We obtained ERF responses by averaging over the stimulus 
epochs per stimulus type separately. Step 3) Predict 
cortical responses from pRFs: Next, we used the pRF 
models to predict responses to the MEG stimuli, obtaining 
18 predicted stimulus values for each cortical location 
(‘predicted surface responses’). Step 4) Predict ERF sensor 
responses: Since the ERF responses were measured in the 
MEG sensors, we converted the cortical pRF responses 
to the sensors by a matrix multiplication of the gain matrix 
(sensors x vertices) with the surface responses (vertices x 
stimuli). The gain matrix indicates how much each cortical 
location contributes to a given sensor ( Huang  et al., 
 1999). Step 5) Compare measured and predicted sensor 
responses: For each timepoint between - 100 and 600 ms 
after stimulus onset, we compared each sensor’s pRF 
predictions to the ERF responses of the same sensor at 
each timepoint using cross- validated linear regression. Step 
6) Shift pRF polar angles and re- fit: To evaluate whether the 
recorded ERFs were optimally fitted by the pRF parameters 
as estimated by fMRI, we shifted the pRF polar angles 
between - 90 and 90deg in separate fitting procedures and 
repeated steps 3 to 5. We expected the explained variance 
to drop compared to the explained variance for the original 
pRF polar angle.

example sensor ERF responses to the 18 stimuli. The 
stimuli evoked clear ERFs as commonly reported in liter-
ature (e.g.,  Hashimoto  et  al.,  1999;  Parker  et  al.,  1982; 
 Tabuchi  et  al.,  2002). The ERFs were spatially specific, 
that is, stimuli at different spatial locations evoked differ-
ent ERFs.

Next, we evaluated whether the pRFs measured with 
fMRI could capture these ERF responses. In brief, we 
used the participant’s pRF models to predict each sen-
sor’s responses to the same 18 MEG stimuli (Fig. 4B left 
panel, Fig. 2 steps 3 and 4) and computed how much the 
pRF prediction explained the ERF signal at any given 
timepoint around stimulus presentation, using cross- 
validated variance explained as a measure of goodness 
of fit. At stimulus onset (t = 0 ms), the pRFs explained 0% 
of the ERF responses (Fig. 4C). This is not surprising as 
no visual evoked signals are present. For this sensor, the 
maximum variance explained by the pRF models for 
these ERF signals was 75.6%. Most variance was 
explained between 75 and 250 ms (Fig. 4D; i.e., CI was 
above 0) with a drop in variance explained around 
150 ms, corresponding to a decrease in ERF responses 
at that time. Note that the variance explained can become 
negative (Fig. 4D; i.e., CI below 0 before 75 ms and after 
300 ms) due to the cross- validation procedure in which 
variance explained is bounded by - infinity and 1 (see 
Supplementary Fig. 1).

3.2. pRF models explain ERF responses across 
many sensors

The cortical pRF models explained the ERF responses 
across many sensors (Fig. 5A). We did not quantify the 
scalp distribution across time, because, ultimately, it is 
the cortical distribution that matters, not scalp distribu-
tions. Nevertheless, the scalp distributions illustrate that 
the pRF models explain the ERF responses across many 
MEG sensors.

Next, we averaged three different sensor selections, 
which resulted in similar variance explained time courses 
(Fig. 5B). The maximum single- sensor variance explained 
in the first participant was 86.7% at 188 ms.

We found similar trends for the other participants 
(Fig. 5C, Supplementary Fig. 3). For all participants, we 
saw a sharp rise around 75 ms after stimulus onset, two 
or more peaks of variance explained, and a decline of 
variance explained at about 250 ms after stimulus onset. 
Maximum single- sensor variance explained during the 
first sharp rise between 50 and 150  ms was between 
84.8% and 90.6% across participants. The maximum 
variance explained for the second time window between 
150 and 250  ms was between 86.7% and 91.0%. We 
show that by using the individual participants’ pRFs, we 
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can explain individual ERFs we measured with MEG with 
high precision over time.

3.3. Altering pRF polar angles reduces the ability to 
explain ERF responses

We shifted each cortical pRFs’ away from its estimated 
polar angle to assess whether the ERFs were most effec-
tively described by the pRFs polar angles as estimated 
by fMRI. We found that moving the pRF polar angles 
away from their initial location (black line in Fig.  6A) 
resulted in a reduction of variance explained (blue and 
pink lines in Fig. 6A). The horizontal black lines indicate at 
which latencies the fit of the altered pRFs were signifi-
cantly decreased as compared to the original pRF polar 
angles, that is, the confidence intervals were not overlap-
ping. We found a similar result for the sensor average of 
the ‘earliest sensors’ (Fig.  6B) across all participants 
(Fig. 6B and Supplementary Fig. 4). Thus, ERF responses 
were best explained by the fMRI- estimated pRFs, sug-
gesting our method is sensitive to the pRF properties.

4. DISCUSSION

We introduced a forward modeling approach that explains 
measured MEG signals with millisecond resolution. The 
participants’ pRFs were estimated on the cortical surface 
( Dumoulin  &  Wandell,  2008) and used to predict event- 
related responses we measured with MEG. We compared 

the predicted sensor responses to the measured ERFs, 
and our results showed that the pRF models explained 
the MEG sensor signal with millisecond resolution across 
sensors and participants (Figs.  4 and 5). Furthermore, 
through a perturbation- analysis we showed that the 
properties of the estimated neuronal population are 
important in explaining the signal (Fig. 6), demonstrating 
the utility of this forward modeling approach to reveal 
neuronal mechanisms with both high spatial and tempo-
ral resolution.

Our approach builds on our previous work described 
in  Kupers  et al.  (2021). Kupers and colleagues demon-
strated that pRFs can capture stimulus- driven oscilla-
tions as measured with MEG. However, stimulus- driven 
oscillations lack high temporal resolution. Extending the 
method to ERF responses allowed us to investigate neu-
ronal dynamics over time. We made several alterations to 
the original method: (i) we adjusted the experimental 
design to present the contrast- defined stimuli for 100 ms 
instead of 1.3 s. The short stimulus presentation allowed 
us to examine stimulus- evoked ERF responses, as com-
pared to stimulus- driven oscillations. As a result, our 
temporal resolution was only limited by the sampling rate 
of the MEG scanner, which was 1000  Hz here; (ii) we 
adjusted the fitting procedure accordingly to accommo-
date the time domain and were able to evaluate the pRFs 
model performance with millisecond resolution.

In principle, we can estimate the responses to any 
visual stimuli. However, pRF properties are influenced by 

Fig. 3. fMRI pRFs and visual field maps. Right hemisphere of participant 1, displaying pRFs properties of the cortical 
locations (vertices) included in the analysis. The top row shows a medial view, and the bottom row shows a lateral view. 
The colored vertices show: (A) how much variance a given pRF explained in the fMRI data (r2); (B) the polar angle in visual 
space, ranging from the upper vertical meridian (uVM) through the horizontal meridian (HM) to the lower vertical meridian 
(lVM); (C) eccentricity.
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the stimulus layout ( Dumoulin  et al.,  2014;  Prabhakaran 
 et al.,  2020;  Yildirim  et al.,  2018) and task ( Klein  et al., 
 2014;  Womelsdorf  et al.,  2006). Essentially, the stimulus 
may elicit responses from different neuronal populations, 
whereas the task may elicit different interactions across 
the visual hierarchy. Therefore, we opted to keep the 
stimuli and task between the fMRI and MEG designs as 
similar as possible.

Fig. 4. pRF- ERF fit for an example sensor. (A) The 18 
stimuli apertures color coded according to visual field 
location, from left (orange) to right (purple). (B) Left: One 
sensor’s pRF predicted responses to the 18 stimuli (color 
coded as in A) for participant 1. The pRF models predicted 
different responses to the different stimuli. Right: The 
sensor’s ERF responses to the same stimuli. The sensor’s 
location is marked as the dot on the head layout. Different 
stimuli elicited different ERF responses. The gray box 
marks the duration of the stimulus. (C) Fits between the 
sensor’s ERF responses and pRF predictions for the 
different stimuli at three time points. The pRF predictions 
explained around 0%, 68%, and 37% of the variance of 
the ERF responses (Eq. 2) at timepoint 0 ms (stimulus 
onset), 100 ms, and 200 ms, respectively. (D) The amount 
of variance explained for the sensor’s ERF responses at 
each timepoint between - 100 to 600 ms after stimulus 
onset. The black line and gray regions indicate the median 
variance explained and 95% confidence interval across the 
120 folds of the cross- validation procedure, respectively. 
For this sensor, the pRFs explained the ERF responses 
between 75 to 250 ms.

Fig. 5. pRF- ERF fit across sensors. (A) Scalp distribution 
of variance explained for the 102 magnetometer sensors 
at three example timepoints (0, 100, and 200 ms after 
stimulus onset). The 204 planar gradiometers are shown 
in Supplementary Figure 2B & C. The white outline marks 
the participant’s head orientation with respect to the 
MEG helmet. (B) Mean variance explained time courses 
over three subsets of sensors (orange: ‘active sensors’, 
green: ‘early sensors’, black: ‘earliest sensors’). All sensor 
selections showed similar average variance explained 
after stimulus onset. (C) Sensor averages for the other 
participants. The exact shapes and timing of fits differed 
per participant; however, we observed the same overall 
trend where the pRFs capture the MEG signals between  
75 and 250 ms.
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Other studies have investigated retinotopy with MEG 
using inverse modeling approaches ( Brookes  et al.,  2010; 
 Cicmil  et al.,  2014;  Moradi  et al.,  2003;  Perry  et al.,  2011). 
Inverse modeling aims to estimate the sources that pro-
duced the MEG signals measured at the sensor level. 
However, in contrast to our method that employs forward 
modeling only, inverse modeling comes with certain lim-
itations. Inverse modeling can suffer from signal cancel-
lation in the MEG sensors due to dipoles oriented in 
opposite directions ( Nasiotis  et  al.,  2017) and sources 
being radially oriented ( Hillebrand  &  Barnes,  2002). While 
the neuronal activity from these sources cannot be esti-
mated using inverse modeling since their signal is not 
picked up by the MEG sensors, our approach does not 
suffer from this limitation directly. Since our sensor pre-
dictions are informed by the gain matrix, which tells us 
which sources do not contribute to a given sensor, our 
predictions take the cancellation into account and thus 
partake in explaining the measured sensor signal.

Another limitation of inverse modeling is that the esti-
mation problem is non- unique. There are an infinite num-
ber of possible source combinations that could lead to 
the measured MEG sensor signal and prior assumptions 
are needed to limit the potential solutions. As a conse-
quence, previous MEG studies were able to capture well- 
established retinotopic characteristics, such as polar 
angle and eccentricity, only on the coarse scale of visual 
quadrants or distinguish foveal versus peripheral visual 
field. Our forward model, in contrast, is directly informed 
by the detailed map we obtained from the fMRI measure-
ments, which has millimeter resolution. By changing the 
properties in a forward manner, we could quantitatively 
examine which properties explain the MEG sensor signal 
the best and furthermore, when they do so during the 
visual response.

In the present study, we modeled the predictions with-
out the offset, that is, only the spatially specific responses 
(see Eq. 1). We did so with the reasoning that we baseline 
corrected our measured ERF data (setting their mean to 
zero), and hence should set the ‘mean’ of our pRF predic-
tions (offset) to zero as well. However, we can see in the 
sensor ERF example (Fig. 4B and Supplementary Fig. 5 
for other sensor examples) that the mean across stimuli 
differs at later timepoints, indicating there are processes 
involved that could be captured by modeling the offset 
too. We therefore ran a separate analysis allowing the off-
set to be fitted in the same cross- validated manner, by 
adding the offset term to the scaled prediction in Eq.1. In 
single sensors, sensor averages and across subjects 
(Supplementary Fig. 6A, B and C, respectively), we see 
that both models (with and without offset) perform equally 
well at early time windows, while the model with the off-
set leads to higher variance explained at later timepoints. 

Fig. 6. Sensitivity to pRF polar angles. (A) Fit of example 
sensor’s ERF values and the original pRF predictions (black 
line). The blue and pink show the fit of the pRFs that were 
shifted by 90deg clockwise and counterclockwise. Solid 
lines and fills indicate the medians and 95% confidence 
intervals over cross- validation folds. The variance explained 
decreased when the pRF positions were shifted away 
from the fMRI- estimated positions. Horizontal black lines 
on top mark the latencies where the fits were significantly 
decreased, that is, the CI of the shifted pRF fits were not 
overlapping with the CI of the original fit. (B) The average fit 
for ‘earliest sensors’ in the same participant (same ‘earliest 
sensors’ selection as in Fig. 5B). We observed a significant 
decline of variance explained. (C) Variance explained for 
the ‘earliest sensors’ average across all shifted pRF polar 
angles, for all participants. Solid lines and fills correspond 
to each participant’s variance explained and CI at the 
timepoint of maximum variance explained for the 0deg 
shifted pRF. Variance explained declines when shifting the 
pRF polar angle away from the original pRF location.
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Importantly, while the offset adds a parameter to the 
model, the fitting was cross- validated and the offset thus 
proves a valuable addition in explaining the signal at later 
timepoints.

Modulatory processes continuously influence the 
feedforward stream of information processing ( V.  A. 
 Lamme  et al.,  1998) and by tweaking the model parame-
ters of the forward modeling approach, we can test spe-
cific hypothesis about the dynamic mechanisms involved 
in visual processing. For example, by implementing other 
models than the simple 2D Gaussian model, we can 
investigate non- linear processes that influence visual 
processing, such as the center- surround organization, 
compressive spatial summation, and divisive normaliza-
tion ( Aqil  et al.,  2021;  Kay  et al.,  2013;  Zuiderbaan  et al., 
 2012). We hypothesize that different models and with dif-
ferent parameter settings would more optimally explain 
signals at different latencies of visual processing. Specif-
ically, several studies suggest that neurons’ receptive 
field properties are not fixed but change during the 
course of the visual response ( Duan  et  al.,  2019;  Klein 
 et  al.,  2014;  Liu  et  al.,  2022;  Malone  et  al.,  2007; 
 Womelsdorf  et al.,  2008;  Zirnsak  et al.,  2014). For exam-
ple, as we employ a fixation task, attention may attract 
pRF positions towards the fixation ( Klein  et  al.,  2014). 
Likewise, coarse- to- fine theories hypothesize that pRF 
sizes reduce over time ( Einevoll  et  al.,  2011;  Malone 
 et al.,  2007;  Sasaki  et al.,  2010). Therefore, we did not 
use eccentricity or size to validate our analysis. How and 
when these pRF changes happen in the healthy human 
brain could be investigated with our approach, with the 
same temporal resolution as invasive electrophysiologi-
cal studies.

Importantly, our approach could also be implemented 
in clinical neuroscience, to gain a better understanding of 
the potential changes in dynamics or timing deficits in 
various ophthalmologic and neurologic disorders. For 
example, in patients with schizophrenia, pRF center- 
surround configurations are altered ( Anderson  et  al., 
 2017), affecting perception ( Dakin  et  al.,  2005) (see 
 Dumoulin  &  Knapen  (2018) for a review on changes in 
pRF properties in various clinical conditions). Our 
approach could reveal the timing of these altered spatial 
interactions in these clinical conditions.

A limitation of our method is that the modeling relies 
on an accurate head model, and different head models 
may yield different results ( Huang  et al.,  1999;  Lalancette 
 et  al.,  2011). Similarly, the modeling assumes a stable 
head position during the recording, that is, that the rela-
tion and distance between head and sensor did not 
change throughout the recording. Inaccuracies in our 
head model estimation and instable head positions 
during recording might have led to underestimation of 

the variance explained by the pRF models. It is possible 
to correct for head movement, however, using Signal 
Space Separation (SSS;  Taulu  et al.,  2005) and we spec-
ulate that this can further increase our model fitting 
accuracy.

An additional limitation is that participant must be 
measured twice, once using fMRI to estimate the pRF 
layout, and once with MEG to obtain the ERF responses. 
However, we expect that, at least for early visual regions, 
the pRF data may be replaced by pRF templates ( Benson 
 et al.,  2012,  2014).

Furthermore, not all MEG sensors were usable for fit-
ting. Some sensors simply did not pick up signals from 
visual cortices because they were too far away from the 
occipital cortex (compare posterior vs. anterior located 
sensor in Supplementary Fig. 5). Other sensors, that did 
contain visual responses, could not distinguish between 
different pRF properties based on their predictions (Sup-
plementary Fig. 7A). Consequently, they did not show a 
reduction in variance explained when shifting the pRF 
properties (Supplementary Fig. 7B). Lastly, in our present 
analysis, we used the pRF properties of all vertices in the 
visual cortex. The analysis can be extended to use the 
pRF parameters of a subset of pRFs, for example, single 
regions of interest such as V1, to evaluate the contribu-
tions of different visual areas.

In our perturbation analysis, we found that the vari-
ance explained for the shifted pRF polar angles did not 
reduce all the way to zero (Fig. 6). We propose that this is 
due to the fact that shifting a pRF will not move its dipolar 
pattern completely away from its most sensitive sensors 
and there will be remaining variance, especially visible 
when averaging over sensors (Fig. 6B and Supplemen-
tary Fig. 4). We observed that the reduction in variance 
explained differed over time, showing less reduction 
during later time windows, likely due to the fact that later 
time windows contain signal from pRFs with larger recep-
tive fields.

In conclusion, we show that pRF models can predict 
event- related responses and we can examine pRF 
properties on the neuronal timescale. The forward pRF 
modeling approach offers a versatile method that will 
allow routine investigation of spatiotemporal dynamics 
of human pRFs, with both high spatial and temporal 
resolution.

DATA AND CODE AVAILABILITY

Analysis code will be made publicly available on GitHub. 
Minimally preprocessed data will be made available upon 
request, due to The Netherlands and EU General Data 
Protection Regulation (GDPR) compliance.
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